
A Survey on Graph Visualization

By

Weiwei Cui

Supervisor

Huamin Qu

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong



Table of Contents

Table of Contents ii

Abstract iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Graph Layout 6
2.1 Node-Link Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Tree Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Tree+Link Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Spring Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Node-Link Layout Applications . . . . . . . . . . . . . . . . . . . . . 9

2.2 Space Division Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Space Nested Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 3D Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Matrix Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Graph Visualization Techniques 16
3.1 Visual Clutter Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Edge Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Node Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Interaction and Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Zoom And Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Focus+Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii



4 Tasks and Applications 31
4.1 Graph Visualization Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Communication Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Reference Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion and Future Work 37
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

iii



Abstract

Graph visualization helps users gain insight into data by turning the data elements

and their internal relationships into graphs. Graph visualization leverages the human

visual system to support knowledge discovery. It has been widely used in many

applications, such as social networks, Internet communications, paper citations, and

biochemical pathways. However, as data become very large nowadays, traditional

graph visualization techniques may fail to reveal the pattern hidden in data. Massive

data pose many challenges for graph visualization, such as visual clutter, layout,

navigation, and evaluation criteria.

In this survey, we first give a brief overview on graph representations and their

layout algorithms. Then we will focus on various visualization techniques for massive

graphs. Specifically, we will describe clutter reduction algorithms and user navigation

techniques. After that, we introduce some common visualization tasks and discuss

the evaluation schemes in typical applications. At the end of this survey, we point

out some future research directions.

iv



Chapter 1

Introduction

1.1 Motivation

Graphs are traditional and powerful tools that visually represent sets of data and the rela-
tions among them. They have a very long history of helping people communicate, under-
stand the real world, and solve scientific problems. The concept of graphs can be traced
back to Ancient Egypt (Rameses I, 1400-1366 B.C)[132], when they were used for a game
called “Morris” (See Figure 1.1 ).

Figure 1.1: Morris Games: Probably the earliest drawing of graph appeared in a book (“Book of
Games”,13th-centery)

Although graphs have a long history, they were not used for scientific purposes until
Euler published his famous Königsberg paper in 1736. In that paper, he solved the path-
tracing problem by using the concept of a graph comprising nodes and edges. It marks
the transition from early graphs to modern graph drawing. However, Euler’s graph is more
like a drawing than a graph (See Figure 1.2(a)). Actually, the appearance of the very first
abstract graph drawing appeared in Ball’s book on mathematical recreations[12], in which
he re-drew the Königsberg problem by using node-link diagrams (See Figure 1.2(b)), in
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1892, which was over 150 years later.

(a) (b)

Figure 1.2: Graph drawings of Königsberg problem: (a) Euler’s drawing in his paper [51],
1736. (b) Ball’s abstract drawing, 1892.

There are several reasons for graphs being powerful visualization tools.

• Graphs are very simple models that can be applied to various fields. Any data that
has internal relationships can be modeled as a graph. The World-Wide Web is a good
example, in which nodes can represent web pages and links can represent hyperlinks
among them. There are a lot more examples such as interpersonal relationships,
animal species trees, computer file systems and so on.

• Graphs are an abstract concept having a specific definition. After hundreds of years of
development, the graph theory field has a very solid foundation and a set of powerful
domain independent algorithms for processing graphs efficiently.

• Human beings have strong visual processing abilities. As visualization tools, graphs
can change the nature of a task by providing external memory aids, providing in-
formation which can be directly perceived and used without being interpreted and
formulated explicitly[179].

• Comparing graphs with other common visual design principles, such as proximity,
similarity, closure, continuity, symmetry, relative size, and common fate, Palmer and
Rock [131] argue that connecting different graphical elements by lines is most powerful
to express that there is a relationship between them. From this point of view, users
also find graphs preferable to other visual representations when they try to visually
explore data with internal relationships.

1.2 Challenge

Graph visualization is a sub-field of information visualization. It usually refers to represen-
tation of interconnected nodes arranged in space and navigation through a visual represen-
tation to help users understand the global or local original data structures. It is a complex
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field, since it draws on ideas from several intellectual domains: computer science, psychol-
ogy, semiotics, graphic design, cartography, and art. It also makes the task of analyzing a
set of data with relations full of challenges.

A major challenge in graph visualization is the size of graphs. Large graphs can cause
several difficult problems:

• Algorithm complexity: Graph size is crucial to algorithms in some cases, because
a lot of useful graph algorithms are NP-complete or NP-hard. Therefore, some layout
algorithms can be totally unusable when facing graphs of a large size. Even if the
algorithm time complexity is bearable, the long processing time can also make it hard
to interact in real-time.

• Display clutter: Practical data usually has thousands of elements or even more.
When the size of data grows, the corresponding graph becomes cluttered and visually
confusing, and users have more and more trouble discerning between nodes and edges.
In some extreme cases, the data can be so large it could even exceed the number of
display pixels.

• Readability: Even if the graph size is still manageable from the point of view of
screen space, how effectively a graph can convey the information required by users
is still challenging, because human perceptual abilities usually require a small graph
size. Ghoniem et al. [65] show that even for a simple task such as locating a node
or finding the links between two nodes, node-link diagram performs badly, even for
graphs with as few as 20 nodes (See Figure 1.3).

• Navigation: People get used to perceiving the world though both local detail and
global context. Navigating large information spaces, such as graphs with thousands
of nodes, suffers the problems of viewing a large space on a small display. How to
navigate a huge graph but not get lost is a challenge problem.

Besides the size of a graph, the complex data structure is another challenge. Current
data typically contains more than three attributes. For example, for a social network such
as Facebook, in which nodes represent people and links represent interpersonal connections.
Nodes may be accompanied by information such as age, gender, and identity. Links also
may have different types, such as colleague relationships, classmate relationships, and family
relationships. To naturally represent all the information at the same time is really challeng-
ing. The most common solution is to use visual cues, such as color, shape, or transparency
to encode different attributes.

However, visual encoding can lead to another challenge: what is a better way to encode
different attributes? Due to the constraints of the human perceptual system, some visual
channels probably have more representational power than others. For example, size and
length are more effective for quantitative data, but less useful for ordinal or nominal data.
Some pairs of colors are more distinguishable than others. How to make the best of these
visual channels to efficiently deliver information to users is still not clear.



4

Figure 1.3: A visualization of graph containing 50 vertices and 400 edges[65]

Since the ultimate goal of graph visualization is to help users understand and analyze
data. Different layouts can bring different feeling to users, even for the same graph. For
example, Figures 1.4 shows two different drawings of the same graph. The only difference is
the curvature, but they emphasize different paths. From this point of view, the effectiveness
of graph visualization is quite a challenge for researchers.

Figure 1.4: Different paths are emphasized by different drawings of the same graph [168]

Various techniques have been proposed for graph visualization for the last two decades.
Different aspects of the human perceptual potentials have been explored to help detect pat-
terns in information. However, it is very hard to evaluate their effectiveness and efficiency.
Some techniques are so intuitive that people do not question their correctness. However,
the intuition is not a good comparison criteria even though it is essential from the point
of view of information visualization. Moreover, it is very hard to generalize results from
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different techniques, because different techniques usually come along with specific tasks.
Therefore, as a fundamental challenge, there needs a technique taxonomy based on which
tasks they focus on, and a set of benchmark tasks which are general enough for designers
to improve their systems and to evaluators to compare different systems.

1.3 Overview

There are many research issues for graph visualization. The goal of this survey is not to
provide a comprehensive review of graph visualization. We mainly focus on large graph
visualization and navigation.

A general process of large graph exploration usually starts with choosing a layout to show
some aspect of the whole data set so that users can get an impression of a global structure.
For example, by viewing the overall structure, users may notice some interesting trends,
clusters, or outliers. Thus, they will decide how to proceed with the next investigation.
Through dimension reduction, filter, or other navigation methods, they can locate features of
interest. To summarize the process, Scheiderman presented the Visual Information Seeking
Mantra [153]: “Overview first, zoom and filter, then details-on-demand”.

Based on the general process steps of graph visualization, the rest of this survey is
organized as follows: In Chapter 2, we try to give an overview of current graph layout
solutions, which can help users see the global structure of the whole data set. In this part,
these layout methods are looked at from the aesthetic point of view. In other words, we
focus on producing an aesthetically pleasing layout instead of theoretically proving graph
properties such as planarity. Then, we discuss several approaches to the navigation of
large graphs in Chapter 3. In Chapter 4, we categorize the common visualization tasks
and popular application fields. Finally, in chapter 5, we conclude and present some future
research directions.



Chapter 2

Graph Layout

As we have stated before, node-link graphs are most popular for visualizing inherent rela-
tions within data. This representation of graphs includes trees and more general networks.
In addition to node-link layout, a few new types of visualization models have been proposed
recently, such as space Nested layout [94]. In this chapter, we give an overview of different
graphical representations for data associated with networks and their layout algorithms.

2.1 Node-Link Layout

Informally speaking, the basic graph layout problem is very simple. Given a set of nodes
with a set of relations(edges), it only needs to calculate the positions of the nodes and draw
each edge as curve. However, to make graphical layouts understandable and useful is very
hard. Basically there are generally accepted aesthetic rules [138, 139], which include:

• Distribute nodes and edges evenly.

• Avoid edge crossing.

• Display isomorphic substructures in the same manner.

• Minimize the bends along the edges.

Though these aesthetic rules are generally accepted, they are not equally important.
For instance, Purchase et al.[139] show that “reducing the crossings is by far the most
important aesthetic, while minimizing the number of bends and maximizing symmetry has
a lesser effect”. However, most of the time, it is quite impossible to meet all rules at the
same time. Some of them conflict with each other. Some of them are very computationally
expensive. Thus, practical graphical layouts are usually the results of compromise among
the aesthetics.

Another issue about graph layout is predictability. Due to the task of graph visualiza-
tion, it is important and necessary to make the results of layout algorithm predictable[81],
which means two different results of running the same algorithm with the same or similar
data inputs should also look the same or alike.

6
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2.1.1 Tree Layout

Tree structures are usually studied separately, because, compared with general network
structures, it is more tractable and easier to understand. Another reason is that tree layout
problems usually have low complexity (probably sub-quadratic time complexities, such as
O(n), O(n log n), and O(n

√
n) ).

(a) (b) (c)

Figure 2.1: Node-link layout schemes: (a) Classical hierarchical view for a moderate large
tree [126]. (b) Radial view [126]. (c) Balloon view [26].

Node-link layouts use links between nodes to indicate the parent-child relationships.
Reingold et al. [143] give a very satisfactory solution for node-link layout as early as 1981.
Their classical algorithm is simple, fast, predictable, and produces aesthetically pleasing
trees on the plane (See Figure 2.1(a)). However, we can see from Figure 2.1(a), this algo-
rithm has a major problem that it make use of screen space in a very inefficient way. It
wastes the root side of the tree and severely clutters the opposite side. Some compact tree
layout algorithms are developed for making layouts more dense, while keeping the classical
tree looks. For example, Beaudoin et al. [17] overlapped branches of the tree to inten-
sively compress large graphs. However, after the compression, a lot of details are missing.
Marriott et al. [114] relaxed the requirement that a parent must be placed exactly midway
between its children. Through slightly shifting branches or nodes, they produce a compact
and relatively clear compact layout of large trees.

Several variation algorithms have been studied to avoid this problem. for example,
Eades proposes another node-link layout called radial layout. Eades’s algorithm recursively
positions children of a sub-tree into a circular wedge shape according to their depths in the
tree (See Figure 2.1(b)). Generally, radial views, including its variations [172, 177, 92], share
a common characteristic: the focus node is always placed at the center of the layout, and
the other nodes radiate outward on separated circles (the depth of a node from the focus
node usually decides which circle that node belongs to). Balloon layout [26] (See Figure
2.1(c)) is similar to radial layout. Balloon layouts are formed where siblings of sub-trees
are placed in circles around their father node. This can be obtained by projecting cone tree
[148] onto the plane.

Comparing these three node-link tree layouts (classical layout, radial layout, and balloon
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layout), the classical layout is the most understandable and well accepted, as it can clearly
reflect the intrinsic structure of the data. Though the other two layouts can make better
use of the display space, it is much less clear where the root of the tree is, and users may
feel confused during the exploration process.

2.1.2 Tree+Link Layout

Since large graphs are much more difficult to handle than trees, tree visualization is often
used to help users understand graph structures. A straightforward way to visualize graphs
is to directly layout spanning trees for them.

Munzner [120] finds a particular set of graphs called quasi-hierarchical graphs, which
are very suitable to be visualized as minimum spanning trees. However, for most graphs,
all links are important. It could be very hard to choose a representative spanning tree.
Arbitrary spanning trees can also possibly deliver misleading information.

Lee et al. [108] propose another strategy to explore general graphs as trees. Their
method, which is called TreePlus, enables users to interactively explore a graph by starting
at a node and then incrementally expanding and exploring the graph. Unlike Munzner’s
algorithm, TreePlus does not have any favorite graph types. However, TreePlus can easily
overlook the overall structures, and some local features, such as loops.

Besides visualizing graphs as trees, a more common way to visualize graphs is to use
tree+link layouts. After finding spanning trees, we show them by using tree visualization
techniques, such as classical tree view [82], radial view [92], or treemaps view [52, 84], and
add the rest edges back (See Figure 2.2). Many visualization systems, such as [36, 72, 82,
21, 92, 22, 84], take this approach.

A number of data sets in real world have more than two kinds of relationships. If one
of them is hierarchical relationship, tree+link layouts are particularly appropriate. For
example, WebMap [36] gives a visualization of user’s web browser history. If a webpage is
visited for the first time, a new node then is added and connected with its predecessor as
part of the underlying tree. However, if the webpage is visited before, a cross link is then
created to connect the node with its predecessor. Danny Holten [84] developed this layout
further by using the underlying tree as control aid to curve the additional links.

2.1.3 Spring Layout

Spring layout, also known as Force-Directed layout, is another popular strategy for general
graph layouts. In spring layout, graphs are modeled as physical systems of rings or springs.
The attractive idea about spring layout is that the physical analogy can be very naturally
extended to include additional aesthetic information by adjusting the forces between nodes.
As one of the first few practical algorithms for drawing general graphs, spring layout is
proposed by Eades[45] in 1984. Since then, his method is revisited and improved [57, 61, 43,
59, 40] in different ways. Mathematically, Spring layout is based on a cost (energy) function,
which maps different layouts of the same graph to different non-negative numbers. Through
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(a) (b) (c)

Figure 2.2: Tree+link layouts: (a) Classical tree with added links [82]. (b) Radial view with
added links [92]. (c) Treemaps view with added links [84].

approaching the minimum energy, the layout results reaches better and better aesthetically
pleasing results. The main differences between different spring approaches are in the choice
of energy functions and the methods for their minimization. For example, Newton-Raphson
method used by Kamada and Kawai [95], simulated annealing method used by Davidson
and Harel [33], and GEM method used by Frick et al. [56].

Besides to encode aesthetic information, researchers also try to use spring layouts to
avoid node overlapping problems. For example, Eades et al. [44] present force scan algo-
rithm to adjust cluttered layouts. Their algorithm scans horizontally and vertically to find
overlapping nodes, move the overlapping nodes to new positions repeatedly until there is
no further overlapping. Li et al. [110] also propose two similar spring embedder models to
solve the overlapping problems. (It has been proved NP-hard to transform a given overlap-
ping graph into a minimum-area layout without node overlapping which still preserves the
orthogonal orders [74].)

In general, force-directed algorithms can successfully produce good results for relatively
small graphs, but they do not scale well with size. Large graphs often make the energy
function very hard to reach minimum. Furthermore, typical force-directed algorithms run
in iterations. During each iteration, all node positions will be renewed based on previous
iteration, which probably needs O(n2 + m) time, where n is the number of vertices and m

is the number of of edges. A good layout result usually need O(n) iterations. Therefore, it
leads to overall running time of O(n3) or even O(n4). Moreover, force-directed algorithms
show a lack of predictability, which means two different runs of the same algorithm with
a same input graph may be unlike one another. The unpredictability can cause serious
problems in some cases, since user navigation heavily depends on the visual representation
of graphs.

2.1.4 Node-Link Layout Applications

The layouts mentioned above all assume that the nodes can be placed anywhere without
additional constraints. However, There some applications in which the node positions have
semantic meanings, such as geographical information. In these applications, nodes are fixed
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according to their geographical information. For example, to view the Internet structure
and traffic flows, researchers uses arcs or layered structures to help viewers tell apart dif-
ferent links (See Figure 2.4). In fact, as long as the layouts involve links, users always can
choose to draw links in different shapes. Table 2.1 gives some examples about how recent
applications place nodes and draw edges. We can see that polylines are not preferable in
graph visualization. That is because, according to the continuity principle in Gestalt laws
[169], humans are more likely to construct visual entities which are smooth, rather than
ones with abruptly changed directions (See Figure 2.3).

(a) (b)

Figure 2.3: Comparison between smooth links and abruptly changed links. It is easier to
perceive the connection relations when nodes are connect smoothly.

Table 2.1: Application categorized by placements of nodes and edges

Straight line Polyline Curve

Force-directed
placed

[133, 10, 175, 164,
16, 37, 21, 7, 4,
128, 176, 75, 2]

[40] [152, 54, 103]

Regular placed [141, 100, 49, 83,
161, 92, 136, 177,
116, 4, 176]

[48] [137, 52, 84, 108,
154, 170]

Arbitrarily placed [8] [88, 129, 150, 86] [174, 30, 134, 31,
80]
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(a) (b) (c)

(d) (e)

Figure 2.4: Edge drawing in 3D: (a) Node-to-node network overload [18]. (b) Billion-byte
inbound traffic on the NSFNET T1 backbone in 1991 [29]. (c) A link visualization system
develped at AT&T research lab. [31]. (d) World wide web traffic visualized by SeeNet 3D
[31]. (e) Visualization of the Internet’s multicast backbone [121].

2.2 Space Division Layout

In space division layouts, the parent-child relationship is indicated by attaching child node(s)
to the parent node. Since the parent-child and sibling relationships are both expressed
by adjacency, The layout should have a clear orientation cue to differentiate these two
relationships. Some researchers [6, 156] think centre-out is a space division layout (See
Figure 2.5), because it leaves less boundary area unused. However, the node sizes are
difficult to control. Some nodes, which have many children, can be so large that they have
a lot of blank spaces in them, while others are too thin to even be labeled or colored.

2.3 Space Nested Layout

Nested layouts, such as Treemaps [94], draw the hierarchical structure in the nested way.
They place child nodes within their parent node (See Figure 2.6(a)). In a Treemaps layout,
nodes are represented as rectangles. A rectangle can be subdivided horizontally or vertically
into smaller rectangles, where each sub-rectangle represents one of its children. The rect-
angle size is proportional to an attribute of the node. This process is repeated recursively.
Treemaps is the most compact display among the three layouts, which leaves no free space
in the display. In addition, it is particularly suitable for showing the size of the leaves in a
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Figure 2.5: SunBurst visualization of a file directory [156]

tree. Similar to Treemaps, Circle packing [167], uses nested circles to describe hierarchical
structures.

However, the basic Treemaps has several drawbacks. Firstly, due to the subdivision
method, long thin rectangles easily appear (Figure 2.6(a) is an example). These long thin
rectangles can lead to a number of interaction problems, such as selecting, comparing,
labeling and so on. Secondly, the hierarchical structure is harder to discern than in classical
node-link tree layout, because the non-leaf nodes are represented implicitly by nesting child
nodes in their parent nodes. Furthermore, the spacial relations in Treemap layout may
mislead users. Users usually assumes subconsciously that nodes closing to each other in
layouts are also closed in the underlying data structure, but it is not always true in Treemaps
layout. Figure 2.6(b) shows a Treemaps view of a balanced tree. We can see that the
structure information is totally unrecognizable.

The high aspect ratio problem has been studied since Treemaps was designed. Several
alternative subdivision algorithms [23, 166, 155] are proposed to generate better aspect
ratios. For the hierarchical structure problem, Some possible solutions include: Cushion
Treemap [165], which uses shading to enhance the parent-child relations, Beamtrees [163],
which keeps the size ratios while leaving gaps between siblings, Voronoi Treemaps [13, 160],
which uses arbitrary polygons to give more meaningful visual structures.

2.4 3D Layout

A lot of 2D layouts have been extended to 3D space (See Figure 2.7(a), 2.7(b)). It is
because, informally speaking, the extra dimension can give more space and it would be
easier to display large structures.
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(a) (b)

Figure 2.6: Treemaps views: (a) Treemaps view of a file directory [165]. (b) Treemaps view
of a highly balanced tree [13].

(a) (b) (c)

(d) (e)

Figure 2.7: Examples of 3D layouts: (a) 3D space nested layout [144]. (b) 3D treemaps
layout [158]. (c) Cone tree layout [148], (d) Hyperbolic view of a tree in 3D space. [106].
(e) Node-link tree (4485 nodes) drawn with the cube polytop (12 subplanes) [85].
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For example, Rekimoto implements Information Cube [144], a 3D version of space nested
layout. He puts the information cubes inside their parent cubes to represent parent-child
relationships. It displays textural labels on semi-transparent cube surfaces. Cone tree [148]
(See Figure 2.7(c)) is one of the best-known 3D tree layouts. The parent-child relationships
are represented by using a cone, in which the parent is placed at the apex and its children
are placed evenly along the cone base. Furthermore, most force-directed methods can be
generalized to 3D [178].

Although the extensions are simple and straightforward, displaying graphs in 3D can
also encounter new problems. For example, objects in 3D can occlude one another. It is
also difficult to find the best view points in 3D space. Therefore, a fundamental need for
3D views is rotation. Through rotating a 3D representation, the hidden structures can be
revealed as much as possible.

Gaining more space is not the only advantage of using 3D. Due to the general human
familiarity with 3D in the real world, there are some attempts to map hierarchical data to
3D objects we are familiar with. For example, SGI file system navigator uses 3D metaphors
to display abstract information (See Figure 2.8), which consists, on the one hand, of adding
blocks in the 3D space whose sizes are proportional to the file sizes and, on the other hand,
of the ability to “fly” over the virtual landscape created by those blocks. Kleiberg et al.
[102] develop a botanical visualization of huge hierarchies, which maps data to a 3D tree
(See Figure 2.8(b)).

(a) (b)

Figure 2.8: (a) The SGI file system navigator. (b) Botanical visualization of a unix home
directory [102].
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2.5 Matrix Layout

An alternative approach to graph visualization is using matrix-based representations (See
Figure 2.9). Graphs can be presented by their connectivity matrixes. Each row and each
column corresponds to a node. The glyph at the interaction of (i, j) encodes the edge from
node i to node j. Edge attributes are encoded as visual characteristics of the glyphs. such
as color, shape, and size. The major benefit of adjacency matrices is the scalability. It
can easily show a graphs with thousands of nodes. Henry and Fekete [79] describe two
matrix layout methods based on approximate traveling salesman problems solutions, which
are computed on the similarity of connection patterns but not on the network itself. By
reordering rows and columns, they try to reveal outliers, clusters, and patterns underneath
the data sets. However, their techniques are poor in time complexity, because they need
to compute the full distance matrix between all the vertices. Abello and van Ham [1] use
hierarchical aggregation mechanism to visualize and navigate large matrixes. They display
the matrix data hiararchically but not ordered. Then users can view and navigate matrixes
as trees. However, the graph paths become very hard to detect in this representation.

Figure 2.9: An example of matrix views. [18]



Chapter 3

Graph Visualization Techniques

Since none of the static layouts can overcome the problems caused by large graphs, inter-
action and navigation are essential complements in computerized information visualization.
In the last decade, people have developed many visualization techniques to solve the related
problems.

3.1 Visual Clutter Reduction

As mentioned above, visual clutter is one of the primary problems caused by large graphs.
A good layout should potentially minimize visual clutter. However, trying to find a good
layout for reducing visual clutter is not practical, since this kind of problem usually involves
optimization, which is usually difficult for large graphs. Researchers have made many
different attempts to address or at least minimize this problem. Here we look at three
widely used ways: edge displacement, node clustering, and sampling. More details about
clutter reduction can be found in [47], which is a taxonomy of clutter reduction schemes
given by Ellis and Dix.

3.1.1 Edge Displacement

We can also draw edges in different shapes to reduce visual clutter. Through drawing edges
as splines and polylines, we can reduce the edge crossing, which is generally considered to
be the most important cause of visual clutter. Edge drawing is especially important for
those graphs whose nodes have preassigned positions, such as geographical positions, since
we can not let users move nodes around to see how they are connected or to alter the layout.

Dwyer et al. [40] integrate edge routing into force-directed layout algorithms based
on constrained stress majorization. They propose several constraints to move nodes and
edge bend points for preventing node from overlapping edges and edges crossing each other.
However, directly minimizing the number of edge crossings is not a good approach. First
of all, to minimize the edge-crossing is NP-Complete [62]. It needs a lot of time to find a
optimized solution for large graphs, which happen to be the majority of cases in information
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visualization field. However, even in the optimum solution, there are still a lot of crossings.
Furthermore, even if we can layer a graph without any edge crossing very quickly, it may
involve a lot of zig-zag links in the layout, which is totally aesthetically unacceptable from
the point of view of information visualization. Some compromised methods for reducing
edge crossing [15, 50, 55, 125] has been proposed recently.

Confluent drawing[49] is another way to alleviate the influence of edge crossing. It
does not directly reduce the number of crossings, but draws lines as curves to smooth the
intersecting areas, and make them more natural to viewers. The idea behind it is quite
simple: for each edge crossing, we make the edges to merge together and drawn as tracks
under this constraint: two nodes are connected if and only if there is a smooth curve path
connects them without any sharp turns or double backs. Although the constraint is quite
clear and determinate. Views still can easily get lost in the complex drawing without any
training (See Figure 3.2).

In the confluent drawing layout, we can still distinguish individual links. If we merge
links more, we have anther approach called edge clustering. Edge clustering aims to reduce
the edge covering area instead of edge crossing. Through merging edges together, more
free space will be released and visual clutter will be reduced. Moreover, edge clustering
gives a more simple and clear picture of the whole graph. Phan et al. [134] propose an
algorithm to generate flow map layouts. However, flow map layout can only be applied to a
set of edges which share a common end point, and draws them as a “free-style” binary tree
layout (See Figure 3.1). Considering the common end point as the tree root, the algorithm
will automatically generate a hierarchical structure based on the leaf positions. There is
no strict requirement for the location of the “root”. The relative positions of leaves are
preserved. Through making the line widths proportional to the edge weights, a flow map
can provide a clear flow distribution and reduce the visual clutter. However, it is only good
at dealing with a small sub-set of graph visualization problems, such as migration flow from
a single source. When dealing with multiple sources in a graph, overlapping flow maps will
distract from each other and make the pattern too difficult to read.
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Figure 3.1: An example of flow map: migration flow form California form 1995-2000 [134]

Figure 3.2: An example of confluent drawing of a layered drawings[49]

Edge bundles [84] is another edge clustering approach. Compared with flow map layout,
it is focusing on clustering links in the tree+link layouts. This kind of problem is showing the
links pattern among the elements in a hierarchical structure, such as the reference relations
among the elements of a file directory tree. Briefly, in this algorithm, every link is curved
by the tree path which connects the link’s two end points. If two links share some segment
of tree path, they will likely be clustered at that segment (See Figure 3.3). Therefore, the
bundle width can intuitively indicate how many links are connecting different parts of the
hierarchical structure.

Wong et al. [174] propose a local strategy for removing edge clutter: EdgeLens. Based
on users’ requests, an EdgeLens can interactively curves graph edges away from their focus
of areas without changing the node positions. Therefore, the underlying node and edge
relationships can be easily disambiguated (See Figure 3.4). Wong and Carpendale further
introduced Edge Plucking [173], an interesting interactive technique which allows users to
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(a) (b)

Figure 3.3: Example of hierarchical edge bundles: (a) and (b) show a balloon layout of a
sftware system and its associated call relations and its bundled result. [84]

(a) (b)

Figure 3.4: Example of EdgeLens: (a) A simple radial layout with dense edges. (b) Edge-
Lens views with color and transparency enhancement. [174]
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temporarily pluck edges apart to clarify node-edge relationships.

3.1.2 Node Clustering

Node (or data element) clustering is a very general research issue appearing in many do-
mains. It can be known as many names according to the context it is used in, such as
cluster analysis, grouping, classification, and pattern recognition.

In the context of visual clutter reduction, clustering means to divide the whole structure
into a number of subgraphs (here we call them clusters) and draw those subgraphs as single
nodes or small regions. Grouping similar or irrelevant visual elements and releasing more
free space can help to reduce the visual clutter. Furthermore, an abstraction of a graph
also can help to emphasize the global structure and ease the perception tasks.

Different clustering techniques have been applied applied by researchers to reduce the
visual complexity. A major difference between them is the definition of distance or similarity
between two items in a data set. There are two basic categories about the similarity
measures.

The first one is content-based, which uses semantic data associated with the graph el-
ements to do the clustering. Although it can usually produce very meaningful clustering
results [119, 145]. For example, Wattenberg [170] describes a method for aggregating net-
works according to attributes on their vertices. His method only computes the attribute
values, which is much like pivot tables in spreadsheet calculators or data cubes in OLAP
databases. This method only works better when the values are categorical with a low
cardinality.

The content-based approach is less studied because it is very application relevant. A
content-based approach which is specialized to a certain problem usually is not general
enough for other problems. Therefore, in this survey we focus on the structure-based
approach, which is more general and only uses structural information (relational information
such as connectivity information and hierarchy information) to cluster nodes.

In structure-based clustering, well defined clusters usually refer to the graph components
who have more intra-link connections than to elements outside them. Various heuristics,
such as connectivity, cluster size, geometric proximity and statistical variation [123, 149,
157], have been studied to develop different approaches. Auber et al. [10] present effective
algorithms for clustering and visualizing an important class of networks called small-world
networks, which have three characteristics: high clustering coefficients, power-law degree
distribution and small diameters.

Various techniques can achieve structure-based clustering, such as graph growing, greedy
clustering, spectral clustering and multilevel clustering. They can be categorized into three
methodologies [28, 87]:

• Graph theoretical: Graph theoretical algorithms rely on a similarity matrix rep-
resenting the similarity between individual nodes. Clusters are formed by closely
related nodes, according to a similarity threshold. Each cluster can be represented as
a connected graph depending on how these nodes are separated. There is a variety of
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techniques in this approach, including spectral bisection [66], spectral quadrisection
and octasection [97], and multilevel spectral bisection [14].

• Single-pass: Single-pass algorithms can find clusters by growing them from individ-
ual data points, called cluster seeds. For example, graph growing and greedy cluster
[101, 27] work simply by choosing a starting node, and then add other nodes one by
one until the cluster is big enough. More specifically, at each added step, greedy algo-
rithms look for the best node in some measurement while graph growing algorithms
look for a node whose resulting sub-graph grows in a certain way.

• Iterative algorithms: Iterative algorithms [77, 98, 34, 113] can use clusters gener-
ated by other clustering algorithms, such as single-pass clustering, as a starting point.
Hierarchical clustering algorithms merge smaller clusters into large ones. Through
applying the clustering methods to the clusters generated in a previous step, we can
produce layers in a hierarchical drawing of the graph, whose depth is determined by
the depth of the recursive clustering hierarchy. After finding a sequence of cluster
structures with more and more details, it transfers partitioning information between
levels to improve the partition quality on each level. There are three major steps
for implementing this method including coarsening graph, partitioning graph, and
projecting and refining graph.

Figure 3.5: Different clustering levels of the same graph [164]

Time complexity is another challenge to node clustering algorithms. In fact, finding
the optimized clusters of a graph is still believed to be an NP-complete problem [87].
The classical heuristic clustering algorithm proposed by Kernighan and Lin [101] in 1970
requires O(m2n) for some graphs, where m is the number of links and n is the number of
nodes. Although their algorithm can produce good results, the scalability is rather poor.
Recently, the fast clustering algorithm has receives a lot of attention since large data sets
are becoming more and more common. Newman [124] proposes a new fast algorithm for
detecting community structure in networks, which can runs in time O((m + n)n).
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Although the quality of an embedded graph drawing algorithm is highly dependent on its
application domain, aesthetics is still one of the most important quality factors in clustered
graph drawing in which the readability of a graph is measured or justified. There are some
general aesthetic goals that a good clustering algorithm should achieve [39] for the human
perceptual needs:

• Balanced cluster: In each level of the hierarchy, the size of the clusters should be
about the same size, and the distribution of nodes should be as even as possible.

• Small cluster depth: There should be a small number of layers in the recursive
decomposition.

• Convex cluster drawings: The drawing of each cluster should fit in a simple convex
region, which we call the cluster region for that subgraph.

• Balanced aspect ratio: Cluster regions should not be too “skinny”.

• Efficiency: Computing the clustering and its associated drawing should not take too
long.

• Symmetry: Display symmetry should be maximized.

A good layout of clusters can provide users with a clear view of the clustered graph
and thus makes it easy for users to visualize and navigate large graphs. Some algorithms
[53, 41, 42, 83] assume that the clusters of a graph are given as input along with the graph
itself, and just focus on displaying these clusters in two or three dimensions (See Figure
3.6).

(a) (b) (c)

Figure 3.6: Clustered graph layouts: (a) layered layout [41]. (b) 2D layout [42]. (c) 3D
layout [83].

3.1.3 Sampling

Sampling is a new approach to reduce visual clutter. Krishnamurthy et al. [104] show
that most graph properties, such as the shape of the degree distribution, can be preserved
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by random-node selection with sample sizes down to 30%. Random sampling is the most
common approach. Rafiei and Curial illustrate the sampling approach in [140]. In their
paper, they study several sampling-based schemes, and showed that in most cases the
topological properties of a network can be successfully preserved after sampling. They also
introduce a notation “focus” to involve human decision and improve sampling results. A
“focus” is an area which can be assigned by users. Once it is set, the sampling is biased
toward that focal area, thus the visualization emphasizes the focal area and its neighborhood
in the graph.

Sampling obviously is a good way to reduce the visual clutter. However, sampling
is an unpredictable approach, which means different sampling results can possibly give
different impressions to users. Therefore, how to define a good sampling strategy is a
challenging problem. Cui et al.[32] propose two measures for computing the data abstract
quality: Histogram Difference Measure and Nearest Neighbor Measure. They borrow these
two concepts from other disciplines to help analysis be aware of how well the abstracted
data represent the original data set. Leskovec and Faloutsos [109] compare existing graph
sampling algorithms, and give two different goals of sampling: the back-in-time goal and
the scale-down goal. For back-in-time goal, the sampled graph S should be as similar to
what the original graph G looks like back in the time, when it had the size of S, as possible.
For scale-down goal, the sampling scheme should preserve the properties of original graph
as much as possible. In their paper, they perform a systematic evaluation of the published
algorithms according to these two goals.

3.2 Interaction and Navigation

Navigation and interaction are essential in computerized information visualization. They
can help users reveal the detailed structures in large graphs. Yi et al. [93] give a summa-
rization of popular interaction techniques. Based on the purposes, they are categorized into
seven groups:

• Select: It helps users highlight certain focus targets, or request computer to process
some specific items.

• Explore: It is used to change current view point to another part of the data in the
same layout representation, such as panning and rotating.

• Reconfigure: It is used to switch between different layouts with the same repre-
sentation scheme, such as replacing nodes in graphs and reordering data items based
on a different criteria.

• Encoding: It is used to switch different representation schemes, such as changing
the layout from node-link representation to treemaps representation.

• Abstract/Elaborate: It adjusts the level of abstraction of a data representation
to give users different insights into the data, such as zooming and clustering.
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• Filter: It reduces the amount of data being displayed and makes the remaining
items more visible based on users’ requested.

• Connect: It is used to highlight the connections between items or the items which
are relevant to the focus item.

For large graphs, three of them are especially helpful: explore, abstract/elaborate, and
filter. In the following parts of this section, we will focus on these three techniques. First,
we describe strategies for smooth panning and zooming. Then, we summarize various
focus+context methods. After that, we introduce animation, and how it is used to improve
the quality of interaction.

3.2.1 Zoom And Pan

Zooming and panning are fundamental tools for exploring large information. Panning means
smoothly moving camera across scene. Though zooming, users switch between abstract or
detailed insights of data. They are complement to each other in functionality, and quite
indispensable when large graph structures are explored.

Due to the simple graphical components of graphs (just nodes and links), zooming is
usually don’t need a lot of techniques. Unlike zooming into a picture can cause aliasing
problems, zooming into graphs only need to adjust the screen transformations, and doesn’t
any extra cost.

However, the pure geometric zooming sometime can fail to reveal the data pattern,
especially when dealing with graphs which are very very dense. Therefore, another form of
zooming called semantic zooming is proposed for this situation. Semantic zooming means
that the information content changes when users zoom in or out. When users zoom into a
particular area, more details are shown. When users zoom out, detailed information is hided,
and only abstract information is shown. For semantic zooming, the technical difficulty is
not with the zooming operation itself, but rather with assigning an appropriate level of
detail to sub-graphs. In the case of graph visualization, the details usually not only refer to
the graph structure details, but more important to the underlying data details which users
are interested in.

Although zoom and pan are traditional and successful navigation tools, and commonly
seen in real world, they can cause some problems in interactive environments. For example,
when a computer user is exploring google earth on the screen, and he has zooms into the area
around Beijing. The user then wants to change to the view of the area around Hong Kong.
The common procedure is first zooming out, panning to Hong Kong and then zooming
in again. These zooming out/in steps are not relevant to what he wants but necessary,
since without them, it apparently takes much longer time to find Hong Kong. Furthermore,
users have to mentally switch between different zoom factors, identify the same item with
different resolutions. Furans and Bederson [58] propose space-scale diagrams to alleviate
this problem. In their idea, an abstract space is constructed by stacking many copies of
the original 2D representations with different different magnifications. Thus, various zoom
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.7: Focus+context views: (a) Details only. (b) Single window with zoom and
replace. (c) Single coordinated pair. (d) Tiled multilevel browser. (e) Free zoom and
multiple overlap. (f) Bifocal magnified. (g) Fisheye view.
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and pan actions can be described as a path in this stacked space. For example, a panning
interaction refers to a path in the same layer, while a zooming action refers to a path from
one layer to another.

3.2.2 Filtering

Filtering refers to hide or de-emphasis items from the view. A straightforward way to
filter is based on data’s additional attributes, such as removing any data whose attribute
values below a threshold. Although the concept of filtering is simple, a useful visual filtering
interface should provide various visual browsing tools, such as fast and continuous display of
results, progressive refinement of parameters, Ahlberg et al. [5] propose the dynamic query
filters for visual information seeking. Their query parameters are rapidly adjusted with
sliders, buttons and so on. A key to these principles is to understand the enormous capacity
for human visual information processing. The authors utilize the powerful perceptual ability
of human beings to help rapidly filter the viewing items. However, Ahlberg et al.’s filtering
method has intuitiveness issue, especially when the data is getting more and more complex.

LensBar, an interface tool proposed by Masui [115], is another attempt to simplify the
filtering process. Browsing and querying are integrated in LensBar into a simple scroll
window slider. The author controls the amount of data to be displayed by ke-word filtering.

Magic lenses [19] also give an idea to further simplify the filtering process. Users can
move a magic lens over the display, and wherever it moves to, different information will be
shown in the area which it covers. Ellis and Dix [46] use this idea to reduce visual clutter.
The lens, which they call sampling lens, is used to show a sampled result of the area it
covers (See Figure 3.8). Their sampling lens can automatically reveal the global general
structure just by moving the lens around the display.

Figure 3.8: Magic lens: Lines within the lens at 10% sampling rate [46]

Instead of clicking buttons or scrolling slide bars, Adar [3] suggests an interpreted lan-
guage to facilitate exploratory tasks. Through combining the interpreted language with a
graphical front end, user can filter and explore graph structures by typing commands.
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3.2.3 Focus+Context

One famous problem with zooming is that if one zooms into some small area, all contextual
information is lost. A set of techniques, which can be summarized as focus+context tech-
nique, are developed to alleviate this problem. One common characteristic of them is that
they all allow users to be able to zoom in one or more certain parts without losing track of
where they are in the whole data set.

Different techniques provide focus+context views. Some are quite old. For example,
some use separate display regions for different resolutions (See Figure 3.7(c), 3.7(d), 3.7(e)).
In these approach, users have to switch between different displays frequently to find out
what they are looking at and what the context is. Some techniques improve the usability by
avoid frequent view switch. For example, bifocal lens can be adopted to see local details on
a large graph. The focus point is directly indicated by the bifocal lens location (See Figure
3.7(f)). Lieberman [111] puts the overview in the same space as the focus. Through making
the overview layer and focus layer stacked together translucently, users can see them in the
same display at the same time. However, users need to try very hard to differentiate them,
because the display becomes very cluttered and the only difference between the two layers
is the resolution. In Sunburst, a radial display of tree data [156], the levels of the tree are
drawn on concentric circles, with the root of the tree in the center. The farther away a node
is from the root (and thus usually the more nodes are on that level), the larger the circle it
is located on. Additional space for details and context is made by shrinking the depiction
of the whole tree, and only showing the wedge of the circular structure that is currently of
interest. The location of the interested part on the whole circle is indicated by the overview
image.

In particular, besides the non-distortion techniques mentioned above, there is another
group of distortion-based techniques, which provide focus+context views by using geograph-
ical distortions. Distortion-based approach imitates the well-known fisheye lens, which en-
large an area of interest, and show other portions of the image with successively less details.
Therefore, distortion-based focus+context technique is also called fisheye view.

The fisheye technique is independent of the layout algorithm and is defined as a separate
processing step on the graphical layout of the graph. Interacting with fisheye means chang-
ing the position of the focus point and/or modifying the distortion value. This independence
has positive and negative aspects. On the positive side, it allows for a modular organization
of software in which fisheye is a separate step in the graph rendering pipeline somewhere
between the layout module and the actual display. Fisheye can also be significantly faster
than the layout algorithm, which is an important issue for interaction. However, the fisheye
distortion may destroy the aesthetics governing the layout algorithm. For example it can
add new and unwanted edge crossings.

Sarkar and Brown [151] presented one of the highly cited works in fisheye view related
visualization. They apply different fisheye schemes on a graph of US cities. Through
comparing distorted maps with normal US city map, they successfully demonstrate the
advantage of fisheye view over normal representation and how they are understandable (See
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(a) (b)

Figure 3.9: A graph of 134 US cities and 338 inter-city paths. The a priori importance value
assigned to each vertex is proportional to the logarithm of population of the corresponding
city. (a) Regular view. (b) Fisheye view.

Figure 3.9).
Fisheye views have been extended and generalized [99]. The extension not only provides

means to do the distortion on a different level than just geometrically (for example, by
replacing images with icons with they are in the context), and to compose the image of
different versions of the undistorted images (for example, to provide color discrimination
in addition to the distortion). Gansner et al. [60] propose another method involving a
topological fisheye for large graphs. Their fisheye shows a focus point with full detailed
network around it, and the nodes farther away from the focus point at increasingly coarse
resolutions.

Due to the efficiency and effectiveness of fisheye view, it has become more and more
common way to visualize many kinds of data, from graphs [151] to file hierarchies [107] to
maps [142] to documents [147] to web sites [146] and so on. However, fisheye and related
distortions have two major drawbacks. They distort the whole image, even the region of
interest, and the distortion is not well supported by graphics hardware. Since interactive
fisheye view usually involve moving the area of focus around the display frequently, these
two drawbacks can cause the usability problem. In particular, the distortion of whole image
can make the focus-targeting process very difficult and distractive. Every little movement of
focus point can cause the whole shape of image changed. Gutwin [68, 69] gives a evaluation
about how distortion affects the usability. He present speed-coupled flattening, which can
automatically adjust the distortion level based on the user’s activity, such as mouse velocity,
acceleration, to improve usability without extra interaction. A comparison between zoom
and fisheye view can be found in [24].

Though various focus+context techniques are keeping coming out from time to time.
It is almost impossible to find a perfect solution for all tasks, because different schemes
have their own advantages and disadvantages. Some are good at view-size reduction, some
are good at shape preservation, some are good at continuity and so on. For example,
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geometric distortion keeps topological continuity, while changing aspect ratios in regions
outside the focus, and altering shapes of large patterns in general. Therefore, users should
keep in mind that there are distortions in shape and position during their exploration, and
be able mentally undo them if needed. For a network engineer ,who mainly cares more
about the topological continuity than geometric accuracy, it is a good choice. However,
for some art designers who want to identify the exact shape of the models, it would not
be a good interface. Multiple simultaneous views at different scales (for example, all the
non-distortion approach mentioned above), present the information simultaneously, without
geometric distortion, but with topological discontinuity at the edge of the views. Users must
find correspondences between features within difference displays.

3.2.4 Animation

Animation is an unique advantage of computerized information visualization technique over
other paper-based visualization techniques. It has become a very important feature in help-
ing users understand the data sets, because it implicitly employs time as an extra dimension
to facilitate data exploration. Robertson [148] argue that animation can help users under-
stand without thinking, since it transfers parts of the cognition tasks to the human percep-
tual system. Compared with directly flipping between different views, animated transition
can give better clues about what the data relations are and help users relate two states of
the system. Some researchers have demonstrated that animation can improve users’ subject
satisfaction. Thus it becoming more and more popular in a lot of works to help users main-
tain orientation in data visualization. Kadaba et al. [127] conduct a comparison between
different explorations using static representation and animated representation. They apply
Michotte’s ampliation rule, which suggests it is easier to perceive when a moving object
strikes another and set the latter into motion, to visualizing causality relationships. They
suggest that the animation can generally facilitate comprehension of complex data.

However, overusing it would cause problems. For example, motion can help indicate the
points of interest, while it is also a powerful force for distraction. In fact, animation should
only be used when it has to be. The results of study conducted by Tversky et al. [162]
show that as long as the static representations are intuitive and clear, using static graphs
is a good choice, even for the data which contains temporal dimension.

Animation is not a standalone techniques. In fact, all the techniques described above can
be combined with animation to improve their abilities. Baecker and Small [11] summarized
different ways in which objects can be animated in. For example, Panning and Zooming
can be animated by moving a static object within a scene. Heer and Robertson [76] catego-
rize popular animatic transitions into seven groups, such as view transformation, filtering,
ordering, and data schema change and so on. Some early systems use animation include
Information Visualizer [25], Cone Trees [148],Eades and Huang’s force-directed layout, Yee
et al.’s radial layout [177] and Vizster [75].

To avoid the disorientations caused by animation, some interactive graph browsers also
preserve invariants to help keep the user oriented. For example, in H3 [120], when a node is
selected, an animated transition moves it to the center of a sphere. The transition includes
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a rotational component so that when the node reaches the center it ancestors are on its left
while its descendants appear on the right. The Hyperbolic browser [106] places nodes and
links within a hyperbolic space; changing the focus node in effect changes which portion of
the space is currently centered.

Gonzales [67] conducted one of the first user studies looking at how animation helps users
make decisions. Her empirical study showed that the effect of animation is closely related
to its properties. This includes image realism, transition smoothness, and interaction style.
The task domain and the user’s experience also affect performance. Smooth animation was
shown to have a greater positive effect on task accuracy than more abrupt animations. The
use of realistic images was also shown to have a greater positive effect on task performance
than more abstract imagery.

Although animation is aesthetically good from a lot of points of view, time probably
is the weakness of this technique. Animation consumes time, so there is clearly a trade-
off in how long the animation should take. Fast animation may confuse users and makes
it hard to notice the connections. On the other hand, if the transition takes too long,
the users’ time will be wasted. Donskoy and Kaptelinin [38] compared three different
navigational techniques (scrollbars, zooming, and fish eye), with and without animation.
Animation was accomplished by inserting a single additional frame between the initial and
final display states. The results did not show any significant improvement in favor of
animated transitions. The authors concede that only one intermediary frame might have
been inadequate. To achieve smoothness of movement, 10 frames per second are generally
considered the minimum required frame rate [25].



Chapter 4

Tasks and Applications

4.1 Graph Visualization Tasks

A useful graph layout means that users can get what they want easily. A number of common
tasks are categorized in [154] and [175], including:

• For the whole graph, count the number of nodes. It is one of the simplest tasks for
graph visualization, which can give users a visual impression about the data scale they
are dealing with.

• For a given node, count the number of its incoming or outgoing links. Since flows can
represent many real world activities, such as migration flows, and movements of funds
among different accounts, this task is also commonly seen in graph visualization.

• For a given node, find its adjacent nodes. For example, in social networks, it is very
important to find the node who have the most interpersonal connections.

• For a given node, find the nodes that can be reached by a certain number of steps, or
a good path, such as shortest path, lowest cost path, or even just a visually pleasing
path, between it and another given node. In Internet networks, this task is usually
studied heavily because of optimization requirements. In social networks, it usually
involves the “small world” phenomenon, which indicates that everyone is at most six
steps away from each person on Earth.

• For the whole graph, find the middleman nodes. Middleman nodes isolate nodes
which connect two or more subgraphs together. For example, in work flow networks,
an analyst usually wants to identify and suppress the weakest link which can disrupt
collaboration between different subgroups or to stop this problem from happening.

• For the whole graph, find strongly connected clusters. A lot of real world relation
networks potentially have cluster patterns. For example, social networks and and
paper citation networks are both typically globally sparse and locally dense networks.
Identifying the clusters can simplify the exploration into different subtasks.

31



32
• For the whole graph, find all nodes/links which share some specific attribute or a

given label. It is very common when users need to explore multi-dimensional data,
such as to see the relation pattern between two group of elements.

Common tasks are certainly not limited to those mentioned. Users can always define their
own tasks. On the other hand, different tasks require different aspects of graphs. Graphs can
include different visual elements, from basic networks, to labels, to attributes [154]. Graphs
can also be represented in different forms, such as node-link diagrams and treemaps. For
different tasks, different layouts perform dramatically differently. However, generally speak-
ing, good layouts should be kept as simple as possible, because any additional information
does not help the tasks but becomes a distraction. For example, basic networks are good
enough for the first three tasks mentioned above. Force-directed layouts are suitable for
finding clusters or locating the middleman nodes. Regular layouts help users to perform
path-related tasks more than any other layouts. Matrix layouts are particularly good at
revealing different proportions of links from a node that go to different categories.

Henry [78] classifies current popular network visualization systems into two categories:
menu-based systems (including [130, 159, 20, 3]) and visual exploration systems (including
[133, 75, 108, 96, 170]). In the following parts of this chapter, based on the data types,
we introduce three applications. Of course there are more applications related to graph
visualizations such as software visualization, and biological graph analysis and so on, but
these three data are most commonly seen topics in graph visualization fields, because of
their interesting data features.

4.2 Social Networks

Social networks are a type of small-world network [171] for their high clustering coefficient,
power-law degree distribution and small diameter. In addition, Social networks are also
famous for their “six degrees” property. Several studies such as Milgram’s small world
experiment [117], have empirically proved that, if a person is one “step” away from a person
he/she knows, then everyone is at most six “steps” away from each person on Earth. In
another words, social networks usually present many local dense clusters, and global sparse
structure with a small number of hub nodes connecting different clusters.

Henry et al. [122] suggest three major tasks particularly suitable for these kind of graphs:
identifying clusters, identifying middleman actors, and analyzing roles and positions. They
combine two traditional layouts: node-link diagrams to show the global sparse structures,
and matrix layout for exploration in the local dense clusters.

Vister [75] focuses visualizing online interpersonal relations, such as e-mail, msn, and
blogging. It uses node-link graph, and provides customized techniques for visually searching
in large graphs and visualizing community structures. Interactive highlighting is used to
emphasize the hidden connections in the large structure. Panning, zooming and distortion
are also integrated to help users navigate.

Social networks are also typical multivariate graphs, which means exploring how the
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attributes of nodes affect the linking patterns is very important. OntoVis [152] and Piv-
otGraph [170] are two recently published applications targeting at exploring their multi-
dimension nodes. Both of them use abstraction methods. By grouping nodes who share a
similar attribute, they try to answer questions like “how race affects patterns of communi-
cation between genders”, or “what some actor’s favorite movie genres are”. In particular,
OntoVis applies both semantic and structural abstractions, and uses force-directed layouts
to show patterns by observing big clusters. PivotGaph focuses on structural abstraction,
and use regular grid layouts to show patterns by examining edges properties.

4.3 Communication Networks

Communication networks, such as telecommunication networks and Internet, are one of the
first graph visualization applications. Communication networks are typical geographical
networks, which means the positions of graph nodes should be strictly kept. Visualizing
the links clearly is usually the major task for this kinds of networks. When the network
structure grows more and more complex, Donna Cox et al. [30, 31, 29] vividly presented
various traffics on the NSFNET by powerful geographic visualizations (See Figure 2.4(b),
2.4(d)).

Figure 2.4(c) shows the link visualization system developed at the AT&T research lab,
which shows the linking relation among different websites [31]. The size color, and thickness
of the nodes and the links are used to encode the corresponding data.

Becker et al. proposed one of the oldest systems called SeeNet [18] to visualize net-
work data. Their system visualizes the associated data on the network instead of simply
visualizing the structure of the network itself. In order to increase the interactivity and
decrease clutter during visualization, the authors introduced several interactive controls,
such as focusing, filtering and animation. The data set to be visualized are the telecommu-
nication traffic among the 110 switches in the AT&T network on Oct. 17, 1989, the day of
the San Francisco earthquake. Figure 2.4(a) shows the network-wide overload at that time
into and out of the Oakland node, in which segment thickness and color are used to encode
the traffic data amount and the bisected segments show the direction. SeeNet3D [31] (See
Figure 2.4(d)) expands SeeNet to 3D space by using 3D graphics techniques.

A visualization of the global topology of the Internet MBone is presented by Munzer et
al. [121]. They mapped the latitude and longitude of MBone routers to 3D geographical
information (See Figure 2.4(e)). their geographical visualization of the MBone is presented
as an interactive 3D map using VRML.

4.4 Reference Networks

Citation networks consist of published scientific articles linked together through their cita-
tions. Generally speaking, citation networks are representations of directed acyclic graphs.
Usually, they also have a high cluster coefficient. The citation network analysis is another
old topic of graph analysis, which started with Garfield et al.’s paper [63] in 1964. In
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their paper, on the example of Asimov’ history of DNA [9], They show that the analysis
“demonstrated a high degree of conincidence between a historian’s account of events and
the citational relationship between these events”. Garner makes an overview of possible
applications of graph theory in citation network analysis was made in his thesis [64].

For citation network analysis, finding the most important part of the citation network
is one major tasks. In 1989, Hummon and Doreian [89, 90, 91] propose three fundamen-
tal algorithms to calculate the link weights to provide us with visual identification the
main critical paths in citation networks. Recently, Batagelj enhances their algorithms, and
successfully apply their algorithms to very large citation networks with several thousands
nodes.

NetLens [96] proposes a “content-actor” model to visualize the citation networks. Netlens
uses traditional histogram to overview the whole graph, and multiple simple coordinated
views of ordered lists to provide more details about the focus actor.

Lu et al. [112] apply node similarity to citation networks. They consider the similarity
based on connectivity information only. Since the citation papers are hand-picked by the the
authors as being related to their research, Lu et al. argue that the reference information
can be explored to judge relatedness. They propose several algorithms to quantify the
relatedness, and compare their results with text-based algorithms.

Shneiderman and Aris [154] propose a network visualization strategy based on semantic
substrates. They experiment their strategy on the citation network about 2780 federal
judicial cases, which is also a directed acyclic graph. By providing user-defined semantic
substrates with interactive filters, their system produces a clear interface for users to perform
their exploration tasks.

4.5 Evaluation

Evaluating complex systems is a challenge, especially in the field of information visualization
[135]. When a new heuristic or intuitive technique is introduced to people, some evaluation
should always be provided to prove that the intuition is correct and the cool results are also
correct and useful.

In Moore’s research [118], he describes the process of new technology adoption. He
divides the end users into two groups: early adopters and early majority. It is always easy
to sell novel technologies to early adopters, because they are visionaries and eager to try
new tools. On the other hand, early majority are pragmatists who want something that is
reliable, proven, and solves real problems. Unfortunately, early majority is a much larger
group than early adopters. Therefore, providing convincing evaluations of new techniques
is one of the major tasks of information visualization researchers.

Evaluations range from understanding users’ needs to formal controlled experiments to
get statistically persuasive results. Kang et al. [96] and Plaisant [135] all propose some
tasks for evaluation, including:

• Usability: Evaluation should measure how usable the proposed technique is, by using
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classical usability measures such as speed of performance or error rates on simple
imposed representative tasks.

• Improvement: Evaluation should show solid evidence that the proposed technique
really has an advantage over previous solutions. Controlled comparison experiments
are the most common way to do this evaluation.

• Ability: Evaluation should find the range and complexity of questions that can be
answered, and characterize the questions that cannot be answered.

• Generality: Evaluation should assert how specialized the technique is, how highly
it depends on the specific problems, and how easy it is to create new applications for
new domain problems.

User studies are the backbone of an evaluation, because they can demonstrate the usabil-
ity and ability. They appear in many papers such as [96, 35, 170, 76, 108, 176, 167, 84, 75].
For example, Wong et al. [175] evaluate the semantics information in the graph by conduct-
ing four experiments on common graph tasks, such as finding isolated nodes and finding ad-
jacent nodes to a particular node. They choose 16 participants with different backgrounds.
For each experiment, the participants are divided into two groups, and offered different
tools and information. Then the researchers question them, measure their responses, for
accuracy and time, and ask for their comments.

Sometimes, user studies could be very informal [167, 84]. In informal user studies,
researchers just give the participants their systems, after a few hours or days, ask their
comments and suggestions, and summarize their feedback and conclusions. In some rare
cases, there are no user studies for some systems which should have evaluations done on
their usability [2, 79, 13]. However, in these cases, researchers usually have strong arguments
when they introduce their techniques, or convincing results to demonstrate their claims.

A formal user study consists of a number of components, such as participants, platforms,
hypotheses, procedures, result discussions, and subject evaluation.

• participants: Based on the testing data set, user study usually consists of 6 to 30
persons, which could be either experts of the corresponding domain [170] or amateurs
[75, 176, 108, 76, 35]. However, the types of subjects usually decide how the methods
of the user studies are conducted. For example, evaluations based on experts usually
highly depend on users’ subjective comments, because they are all experienced users,
and have deep insights into the data. Their judgments usually hit the nail on the head.
For the evaluations based on amateur users, the design of controlled experiments are
more important.

• Platforms: Materials are not the determinant components of the user study. Not
every user survey has to contain it. However, when the evaluation involves a lot
of display interface activities, it is better to mentions the monitor models and their
resolutions, and so are CPU models when time is critical.
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• Hypotheses: Hypotheses refer to the effects researchers anticipate in their experi-

mental data. No matter researchers record them in their papers or not, hypotheses
are always needed and important, because they influence the design of test sets.

• Procedures: The procedures are related to the types of participants. Controlled
experiments are how user studies proceed. For each hypothesis researchers have got,
they design a number of (for example, six to ten) tasks [76, 108, 176]. The tasks
should be designed carefully, because the results should be qualitative and objective.
There are a few popular tasks for graph visualization, including:

– Locating a specific element.

– Tracking a path or an element.

– Counting a number, such as the number of elements with same attribute value,
the number of elements connecting with a common elements, etc.

– Finding a special element, such as the biggest/smallest one, the cluster containing
most items, etc.

In controlled experiments, tasks should be performed in different ways, so that re-
searchers can compare the results to support their claims.

• Result discussions: Testing results should be as objective as possible. Time, ac-
curacy rate, and average error are favorable to comparisons. Besides using charts or
tables to demonstrate the advantages and improvements of new techniques, analysis
should also be made at this stage, including explaining figures, arguing strengths and
weaknesses.

• Subject evaluations: Subject evaluation usually acts as a complement in the user
studies. For example, subject evaluation could be summarized as user feedback [84,
167], or integrated in the result discussion parts, or conducted as a survey [76, 3].

Besides user studies, usability can also be proven by conducting case studies [152, 80,
96, 3, 154, 105, 109, 87]. In case studies, no subjects are involved, researchers just need to
apply their techniques or system on one or a few real-world data sets, and demonstrate the
usability by showing their findings. In some cases, case studies are preferable to user studies,
such as the complex exploration techniques/systems which are very hard to operationalize
the exploratory process, or objectively compare subjects’ findings. In addition, case studies
can show the usefulness of a visualization system in the real world environment. However,
comparing with user studies, case studies are less common. The limitation is that the results
of the case study are not duplicable. It is also hard to prove the generality by case studies,
since different cases are relatively isolated and unique.

Comparison is a third way to do an evaluation. It is the least common method for
evaluating graph visualization. It is especially suitable for the new techniques highly re-
lated to algorithms and less involving user interaction [35, 8, 87]. However, in the graph
visualization field, most cases do not fall into this category.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Graph visualization is a sub-field of information visualization. It focuses on visually repre-
senting abstract data elements and the relationships between and reduce the cognitive load
to understand the global and local structure.

In this survey, we review two graph visualization techniques: graph layout and visual-
ization techniques.

Graph layout has been studied for years. Some old layout algorithms were developed
early on and have become relatively mature now, such as node-link tree layout. However,
when the real world data grows exponentially, common layouts are becoming more and more
inadequate or even unusable, because of their poor scalability. Thus, different variations,
such as Treemaps layout and forced-directed layout, have been developed with the aim of
large graph visualization. Though a lot of efforts have been made to improve the layout
scalability, each one of them has their own merits and drawbacks. No layout algorithm
alone can provide a satisfactory solution for different tasks. For example, some may be very
time consuming, while others may not be visually pleasing from the aesthetic point of view.

Hachul and Jünger [71] compare six graph drawing algorithms for twenty-nine real or
artificial graph examples. In conclusion, they find out that HDE [73] and FM3 [70] have best
scalability. However, if we just use graph layout to tackle the scalability, there are basically
no differences between computer-based and paper-based graph visualization solutions. As
an inherent feature of computer system, interactivity is heavily involved in visualization
techniques which can help simplifying the exploration tasks. Shneiderman gives a general
guide to visual information-seeking mantra [153]:“Overview first, zoom and filter, then
details-on-demand”. In the case of graph visualization, “overview first” usually indicates
visual complexity reduction. Different aspects of visual complexity have been studied,
such as edge crossing and node cluster, and different reduction strategies are developed
accordingly. Still, the selection of reduction strategies highly depends on the priority of
the specific task. After users get the overview of the global structures, different navigation
techniques can help users locate and explore their areas of interest, and furthermore, find
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patterns in information.

5.2 Future Work

Many graph visualization techniques have been proposed over the past 20 years. They pro-
vide fruitful domain-independent graph algorithms which can be applied to various practical
applications. However, pure graph is such a primitive model that it will easily encounter
extra constraints when facing real problems. The additional information, which real graph
data usually has, can divide visualization tasks into different categories.

Generally, there are some specialized data graph which are common in the real world
but not in graph visualization. Of them, we are particularly interested in two: graph data
with multivariate attributes and graph data with geographical information.

Multivariate dimension data is very common in practice. Just like a person in a social
network, a node in a graph can contain much additional information. Intuitively, the most
common strategy is drawing nodes with different colors or shapes to indicate different
dimensions[152, 170]. Although it is a natural extensions of familiar displays, it has two
drawbacks. Color and size both have limitations in quantitative comparisons. Furthermore,
complex encoding schemes usually make a visual representation too chaotic to read. Since
in many applications, viewing the correlations among different attributes is crucial.

For applications where the data has geographical information, it is important to place
the nodes to reflect their relative geographical relations. This type of problems is also very
common in practice, such as road maps [86], migration flows [134] and Internet traffics
[31]. However, it is also very difficult in graph visualization, because the preassigned node
positions make common visualization techniques totally unusable.

Besides dealing with these problems which are common in the real world but not in
graph visualization, there are also a lot of unclear general problems that exist in graph
visualization. For example, how do we evaluate the usability? Many papers describe in-
tuitive techniques to solve problems, but there not many evaluation is provided to prove
the intuition is correct or the pretty resulting picture is useful and correct. More examples
include how to give a quantitative comparison between two similar layout results, how to
derive highly sensitive and selective algorithms to find causality or make visual inferences
and so on.



Bibliography

[1] J. Abello and F. van Ham. Matrix Zoom: A Visual Interface to Semi-External Graphs.
Proceedings of IEEE Symposium on Information Visualization, 2004.

[2] J. Abello, F. van Ham, and N. Krishnan. ASK-GraphView: A large scale graph visual-
ization system. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER
GRAPHICS, 12(5), 2006.

[3] E. Adar. GUESS: a language and interface for graph exploration. Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 791–800, 2006.

[4] E. Adar and M. Kim. SoftGUESS: Visualization and Exploration of Code Clones in
Context. Software Engineering, 2007. ICSE 2007. 29th International Conference on,
pages 762–766, 2007.

[5] C. Ahlberg and B. Shneiderman. Visual information seeking: tight coupling of dy-
namic query filters with starfield displays. Conference on Human Factors in Comput-
ing Systems, 1994.

[6] K. Andrews and H. Heidegger. Information slices: Visualising and exploring large
hierarchies using cascading, semi-circular discs. Proc of IEEE Infovis’ 98 late breaking
Hot Topics, pages 9–11, 1998.

[7] D. Archambault and D. Auber. Smashing Peacocks Further: Drawing Quasi-Trees
from Biconnected Components. IEEE Transactions on Visualization and Computer
Graphics, 12(5):813–820, 2006.

[8] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel Graph Layout
by Topological Features. IEEE Transactions on Visualization and Computer Graph-
ics, 13(2):305–317, 2007.

[9] I. ASIMOV. THE GENETIC CODE. NY State J Med, 65:1646–51, 1965.

[10] D. Auber, Y. Chiricota, F. Jourdan, and G. Melançon. Multiscale visualization of
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