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Abstract
This paper describes a new technique called EncCon for visualizing and

navigating large hierarchical information. This technique consists of two com-

ponents: visualization and navigation. Visualization uses a fast enclosureþ
connection method to calculate the geometrical layout for the display of

large hierarchies in a two-dimensional space. Our technique uses a rectangular

division algorithm for recursively positioning the graph. This visualization aims

to maximize the utilization of display space while retaining a good geometrical
layout as well as a clear (explicit) presentation of the hierarchical structure of

graphs. This paper also presents an experimental evaluation of EncCon’s layout

algorithm. Besides the layout algorithm, EncCon uses a new focusþ context
viewing technique for the navigation of large hierarchies. We use the

zoomingþ layering concept to achieve the focusþ context viewing, rather than

the traditional enlargeþ embedded concept, which is used by most of the
available focusþ context techniques. Technically, it employs semi-transparency

to achieve the display of two layers of information in z-coordination at the same

visualization. Both context view and detail view are drawn at two separate layers.

These layers are then displayed in an overlapped manner at the same physical
screen space.
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Introduction
With the rapid growth of information, there is a huge amount of data that
have become available for analysis. The size of this data is rapidly
increasing each year. The traditional user interfaces provided for informa-
tion systems, with the typical working mode of textual display plus
scrolling bar that often generate long textual pages of output data for users
to read, no longer meet the satisfaction, in terms of human cognitive
process, of users, such as Business Managers and System Analysers who are
using these systems. It is very time consuming for these users to read
through the information line by line through the whole page or several
pages to find the particular data items they need. Furthermore, it is even
harder for them to extract some inter-relationships among the data items
presented across several pages. These problems with the current user
interfaces have led many designers of information systems to realize the
need for the development of new generation user interfaces that can
reduce the human cognitive cost for their next generation information
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systems. As a result, they have started to use a new
technique called Interactive Visualization for the design of
their new user interfaces.

Interactive visualization is defined by Colin Ware1 as ‘a
process made up of a number of interlocking feedback
loops that fall into three broad classes. At the lowest level
is the data manipulation loop, through which objects are
selected and moved using the basic skills of eye-hand
coordination. y At an intermediate level is an explora-
tion and navigation loop, through which an analyst finds
his or her way in a large visual data spacey . At the
highest level is a problem-solving loop through which
the analyst forms hypotheses about the data and refines
them through an augmented visualization process.’

Interactive visualization, as defined above, is a different
way of thinking about information processing in infor-
mation systems. There is no longer a task-driven user who
formulates a precise query, types it into the database
search form, retrieves the result and then leaves the
computer. Information processing becomes a continuous
exploration through the visual mappings. The user is in
the information space more or less all the time, together
with a multitude of heterogeneous information sources.
She/he can explore, view, investigate, discover, learn and
manipulate through the visual metaphors.

There are two important steps that are involved in the
design of interactive visualization. The first step is to map
the relational data into a geometrical plane. This is the
fundamental problem of visualization. We call it the
graph drawing problem or the layout problem. The
second step is view navigation. View navigation is about
changing views interactively, step by step, to reach the
target information that a particular user wants. This step
is defined as the second loop of interactive visualization
by Colin Ware.1 We now introduce some basics about the
layout design and navigation design.

The layout problem in visualization
In practice, there are many information sources that are
organized in hierarchical form. Therefore, the research of

hierarchical layout becomes one of the major areas in
information visualization. Chaomei Chen2 stated in his
book that ‘Hierarchies are one of the most commonly
used structures. The organizational structure of a file
system can be represented as a hierarchy; the structure of
a classification system is a hierarchy; and a taxonomy of
all animals is also a hierarchy. Hierarchical structures not
only play significant roles in their own right, but also
provide a means of representing a complex structure in a
simplified form’.

Research in hierarchical visualization can be roughly
classified into two main streams: the connection approach
and the enclosure approach. They are both effective
approaches for the visualization of hierarchies and the
use of each approach depends primarily on the properties
of the data in a particular application domain. Figure 1
shows an example of Classical Hierarchical Layout3 which
is a typical connection approach. Figure 2 shows a typical
enclosure example which is called Tree-maps.4

� The connection approach, examples being Classical
Hierarchical View,3 H-tree Layout,5 Radial View,6

Balloon View,7 Disk Tree,8 NicheWorks,9 Rings,10

Narcissus,11 Space-Tree,12 Hyperbolic Browser,13,14

Cone-Tree,15 Botanical Visualization,16 Internet Map-
ping,17 etc., uses a node–link diagram that displays the
relationships of information explicitly. This approach
generally gives users an immediate perception of the
relationships. However, it is not often efficient in terms
of utilizing display space because most of the pixels are
wasted as background.

� The enclosure approach is an excellent solution in terms
of optimizing the use of display space. It was first
proposed by Johnson and Shneiderman4 in 1991. They
used a new space-filling concept to map the hierarchical
information to a rectangular two-dimensional space and
it ensured 100% use of the display space. Later, some
other similar methods were proposed and implemented.
Currently, the most commonly used enclosure techni-
ques include Tree-Maps,4 Cushion Tree-Maps,18 Squarified

Figure 1 An example of classical hierarchical layout (adapted from Reingold and Tilford3).
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Tree-Maps,19 Sunburst,20 InterRing21 and Venn diagram.22

The Tree-Maps and its variations are highly capable of
displaying a large amount of information within a
limited display space. As a result, these techniques can
be applied to visualize large hierarchies. The Tree-Map
techniques have made a great contribution to the field
of information visualization through a number of
successful applications in stock market data, file systems
visualization, image browser, etc.23 Although space-
filling is a great approach for visualizing large hierar-
chies, most of these techniques do not show the
relational structure of information explicitly, except
the InterRing technique. This costs extra cognitive effort
for viewers to perceive and understand the relational
structures that are presented implicitly in the enclosure
manner (see more discussion from Nguyen and
Huang24). Note that the InterRing and Sunburst techni-
ques are not a pure space-filling approach, which will
still produce some unused spaces in their visualization.
A comprehensive comparative study of various Tree-
Maps techniques was carried out by Bederson et al.23

To be able to inherit the advantages of both
approaches, a compromised approach that combines
both the connection and the enclosure concepts into one
for the visualization of large hierarchies has been
proposed. These techniques include Space-Optimized Tree
(SO-Tree)24 and FlexTree.25 The SO-Tree essentially inher-
ited the space-filling concept proposed by Johnson and

Shneiderman4 to maximize the utilization of display
space for visualizing large hierarchies. Technically, this
technique uses a polygonal area division method for the
recursive positioning of nodes and their sub-trees. SO-Tree
also uses a node–link diagram, which aims to enhance
the understanding of the hierarchical structures. We
classify this kind of technique as connectionþ enclosure
approach. However, the polygons are sometimes not
good shapes for viewers to perceive. Song et al proposed
a multiple foci technique, called FlexTree,25 which
enhances the scalability by introducing the space-filling
concept into node–link diagrams, as claimed by the
authors. This technique compresses the width of the tree
presentation by reducing both the height of nodes and
the empty space between nodes that are presented in the
same level. This aims to increase the utilization of display
space. Although the user can navigate through hierarchy
via multiple foci, the compressed layout generally is not
aesthetically nice and clear.

The view navigation problem
Another important step involved in the interactive
visualization process is view navigation. Chaomei Chen2

stated in his book that ‘navigation in a hierarchical
structure involves moving from one node to another,
along the existing hierarchical links in the structure.
When the size of a hierarchy becomes large, it is desirable
to enable users to have easy access to contextual
information, as well as local details’. One of the most

Figure 2 An example of Tree-Maps (adapted from Johnson and Shneiderman4).
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important issues involved in navigation is that the users
are always able to see (or have easy access to)
contextual information. This allows users to maintain
the perception of where they are and where they can
move from during the navigation of large information
spaces. This also assists users to make further decisions
about where they should go next, as well as where
they are, while interactively navigating through the
information space.

To achieve easy access to both the contextual and the
local information in large hierarchies, there are several
optimized navigation solutions that have been developed
to accommodate with the geometrical layout techniques.
Most of the current navigation techniques can be
roughly classified into three approaches: focusþ context,
zoomingþ filtering, and incremental exploration.

� Focusþ context – This approach is defined as a viewing
approach that provides users with a detailed view of a
small focus area and a global view of the overall
context. In other words, it can be defined as follows:
‘detailed views of particular parts of an information set
are blended in some way with a view of the overall
structure of the set’. Typical focusþ context techniques
are Fisheye Views,26,27 Polyfocal Display,28 Bifocal
Lens,29 Perspective Wall,30 Hyperbolic Browser,13 etc.

� Zoomingþ filtering – This approach is defined as a
viewing approach that works by reducing the amount
of context in the display. The reduction is done by
filtering the information in the form of selecting a
subset of the data along a range of numerical values of
one or more dimensions. The typical zoomingþ filter-
filtering techniques are Starfield Display,31 Tree-Maps,4

Pad,32 Padþ þ 33 or the more recent version called
Piccolo,34 etc.

� Incremental exploration – This approach is defined as a
viewing approach that displays only a small portion of
the full hierarchy incrementally following the user’s
exploration of information space. Thus, these techni-
ques are able to handle huge data sets where it is
impossible to display the entire hierarchy on the screen
at a time. Incremental exploration techniques can be
found,35–37 etc.

When comparing the above three approaches, the
focusþ context techniques generally provide a better
solution for accessing the contextual information during
navigation. To achieve this, it uses enlargeþ embedded or
enlargeþ blended concept (see Figure 3), which usually
employs a distortion or/and a semantic zooming22

technique to enlarge a portion of the information
structure to form a detail view of the local information
structure that a user is currently focusing on during
navigation. Therefore, we sometimes call this detail view
as focus view. It then embeds this focus view into the global
view of the overall contextual information structure for
visualization. This approach is one of the most efficient
and effective navigation strategies in the current design
of interactive visualization, and is widely used and

commercialized in many visualization and Graphic User
Interface (GUI) tools. However, one obvious limitation of
this approach is the ‘area division’, that is, the whole
geometrical area has to be divided into two parts: one for
the drawing of local structure and another for the
drawing of the rest of the global structure. This, therefore,
limits the amount of information that can be displayed in
the focus view. Also some focusþ context approaches
provide a (continuous) transition area between two views
to reduce the human cognitive process in identifying the
connection between two views (see Figure 3).

The zoomingþ filtering and incremental exploration ap-
proaches do not provide standard strategies for accessing
the contextual information during navigation. However,
some of these techniques do provide extra mechanisms,
such as landmark nodes and history path, to show the
contextual information to a certain degree during the
navigation. One such technique is WebOFDAV.38

EncCon visualization
Although there have been many proposed innovative
techniques both in visualization and navigation to
facilitate the design of interactive visualization, most of
these techniques, however, do not consider all the aspects
involved in interactive visualization design. Currently
only a few interactive visualization solutions satisfy the
multiple design requirements such as (1) space utiliza-
tion, (2) fast computation, and (3) minimization of the
human cognitive process.

In this paper, we propose a new Enclosure and Connec-
tion approach (called EncCon) for the construction of
interactive visualizations of large hierarchies. This tech-
nique consists of two components: the visualization and
navigation. EncCon uses a fast enclosureþ connection
algorithm to calculate the geometrical layout of large
graphs in a two-dimensional space. It essentially inherits
the advantage of space-filling techniques4,18,19,24 that

Figure 3 The traditional focusþ context approach that uses the

enlargeþ embedded concept divides one geometrical area into

two for the display of the Detail View and the Global View.
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maximize the utilization of display space by using area
division for the partitioning of sub-trees and nodes. Note
that the issue of space utilization becomes significantly
important when visualizing large graphs with hundreds
or thousands of nodes and edges because of the limita-
tion of screen pixels. It is similar to the original Tree-
Maps4 and Squarified Tree-Maps19 that use a rectangular
division method for recursively positioning the nodes,
rather than a polygonal division method used in SO-
Tree.24 This property aims to provide users with a more
straightforward way to perceive the visualization and
ensures the efficient use of display space.

In order to address the specific criteria of EncCon
drawing, we use ‘squarified’ rectangles for the area
division, which is similar to the Squarified Tree-Maps19

algorithm. We will discuss our drawing criteria in the
technical section. The EncCon drawing ensures that all
sub-hierarchies are inside rectangular geometric local
regions. Thus, there is no overlapping between rectan-
gular local regions of nodes and their sub-trees. However,
our area division algorithm is different from the Squarified
Tree-Maps algorithm. In Squarified Tree-Maps, the parti-
tioning is accomplished through the horizontal–vertical
manner. In EncCon, this is achieved in the circular
manner, in which all rectangles are placed in the
north–east–south–west order around four sides of the
parent rectangle. Both of the above partitioning algo-
rithms ensure the efficiency of space utilization. The
EncCon visualization also uses a node–link diagram to
present the hierarchical structure explicitly.

Besides the layout algorithm, EncCon also uses a
focusþ context viewing technique for the navigation of
large hierarchies. It uses the zoomingþ layering concept
(see Figure 4) to achieve the focusþ context viewing,
rather than the enlargeþ embedded concept which is used
by most of the other focusþ context techniques. Techni-

cally, we employ the semi-transparency technique to
achieve the display of two separate information layers in
z-coordination on the same physical screen space. This
enables the context view and the focus view to be drawn
and displayed in an overlapped manner on the same
screen. This layering display enables the focus view to be
displayed in a full screen size with more detailed
information for users to see. These overlapped twin layers
always keep one in highlighted full display and another
de-emphasized.

The transparency techniques have been used in a
number of 3D visualization systems, such as the Informa-
tion Cube,39 Cone-Tree15 and the Spiral Calendar,40 etc.
These applications mainly aim to solve the overlapping
problem. However, these systems did not use trans-
parency techniques for navigating abstract graphs in
two-dimensional spaces. Lieberman41 also presented a
promising technique for navigating geometry-related
information spaces. However, his research focused on
the navigation of a spatial metaphor, rather than an
abstract graph metaphor.

In EncCon, navigation is achieved interactively
through zooming and swapping of views between full
display and semi-transparent display. In addition,
smooth transitions between views are achieved by fading
in/out animations that help users maintain their orienta-
tions during the interaction and navigation, and preserve
their mental map of views.

Our EncCon technique can only be applied to rooted
trees. We now review the terminology that is used in our
technique.

Terminology
A tree is a connected graph without a cycle. A rooted tree
consists of a tree T and a distinguished vertex r of T.
The vertex r is called the root of T. In other words, T can

Figure 4 EncCon uses a new zoomingþ layering concept to draw the ‘context view’ and ‘focus view’ on two separate layers that are

displayed in the same visualization by the use of the semi-transparency technique.
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be viewed as a directed acyclic graph with all edges
oriented away from the root. If (m,n) is a directed edge in
T, we then say m is the parent of n and n is a child of m. A
leaf is a vertex with no children. If T contains the vertex n,
then the sub-tree T(n) rooted at n is the sub-graph induced
by all vertices on paths originating from n. We also use a
node to represent a vertex n with its displaying properties.
This terminology is mainly mentioned in the display
section. Each vertex v has an associated value w(n), which
we call the weight. The local region R(v) of the vertex n is
a rectangle, and it contains the drawing of a sub-tree T(n).
The rectangle R(vi) is proportional to the weight w(vi) of
the vertex vi.

A layered visualization LV consists of two graphical
layers L1 and L2 of information, displayed in an over-
lapped manner in the same physical screen space,
LV¼L1þL2 (see Figure 4). Graph G¼ {V, E} is the model
that presents the structure of an information space. Each
graphical layer is the medium for the drawing of G or a
sub-graph GiAG. At any time, a graph Gi drawn in L1 is
always a sub-graph of Gj drawn in L2. Thus, we constantly
have GiAGjAG.

Enclosure + Connection Layout
The layout algorithm, which is responsible for position-
ing of all the vertices {n1, n2,y, nn} of the given tree T in a
two-dimensional geometrical space, is governed by a
particular area division algorithm. Each vertex vi is
bounded by a rectangular local region R(vi) and the
drawing of the sub-tree T(vi) is restricted to inside the
geometrical area of R(vi). Thus, the local region R(vi) of
vertex vi is the sum of the rectangular areas assigned to its
children. The position of vertex vi is at the centre of the
rectangle defined by R(vi). See the example in Figure 6a.

The area division algorithm, which is based on the
space-filling concept initially proposed by Johnson
and Shneiderman,4 is responsible for the calculation of
local regions {R(v1), R(v2)y, R(vn)} for the placement of
all vertices {n1,n2,y, nn} and their sub-trees in the given
tree T.

The area division algorithm must address a specific area
partitioning criteria to derive a complete set of rectan-
gular local regions {R(v1), R(v2) y, R(vn)} that can produce
a high-quality layout of the node–link diagram of the
corresponding tree T, in terms of satisfying the following
general Aesthetics rules defined by Di Battista, Eade,
Tamassia, and Tollis in their Graph Drawing book.42

1. Edge crossings: Edge crossings make it difficult to trace
paths. So all edge crossings should be removed if
the graph is planar; otherwise the total number of
edge crossings should be minimized.

2. Angular resolution: The angle between the edges of
one vertex should be maximized. This aesthetic is
especially relevant for straight-line drawings.

3. Total edge length: Minimization of the sum of the
lengths of the edges. The average of all edge lengths
should be as small as possible.

4. Uniform edge length: Minimization of the variance of
the lengths of the edges. Minimization of the number
of long edges that usually cost extra cognitive effort is
necessary to perceive the parent–child relationships.
Minimization of the number of very short edges that
sometimes cause overlaps among the graphical nodes
is carried out (see Figure 5).

Obviously, from Figure 5a, we can see that the use of
thin (very thin) rectangular local regions for placing
node–link diagrams will greatly reduce the quality of
graph presentation. Therefore, the ‘squarification’ of
local regions is essential in the design of the space
partitioning algorithms, especially when node–link
diagrams are placed to show relationships among
vertices. This has led to the exclusion of original Tree-
Maps4 algorithm for the space partitioning in EncCon,
since it naturally produces many thin rectangles (see
Figure 2).

A drawing of sub-tree T(vi) rooted at vi is calculated
based on the properties of vi and its local region R(vi).
Each vertex is associated with a weight and the vertex’s
local region is calculated proportionally to its weight.
There are several ways to define the weight of a vertex
based on its physical or logical properties, such as a
domain-specific property: the size of a file or a directory
that is presented as a graphical node that we are
visualizing. In this paper, however, we define the weight
of vertex vi to be proportional to the number of its
descendants. The weights of all vertices are pre-calcu-
lated before the layout of the node–link diagram is
drawn. This step is described in more detail in the next
section.

Weight calculation
We assign a weight w(v) to each vertex v for the
calculation of the local region R(v) that relates to the
regions of its parent and siblings. Suppose that vertex v
has k children {nlþ 1, nlþ2, y,nlþ k}. The calculation of w(v)
is done recursively from leaves to a vertex using the
following formula:

wðvÞ ¼ 1 þ C
Xk

i¼1

wðvlþiÞ; ð1Þ

where C is a constant (0oCo1), and w(vlþ i) is the weight
assigned to the ith child of vertex v. The constant C is a
scalar that determines the size difference of local regions
of all vertices based on the number of descendants of
those vertices. The value of C may be altered to adjust the
layout for a better view that can better fulfil the aesthetics
rules of graph drawing. We can see that in Figure 6a, the
difference among the local regions is much higher than
those in 6b. From our experiments that include those
from Figures 12 to 15, and Applications 1 and 2, it was
found that the value C¼0.45 generally gives the best
view of layouts. Therefore, we set this value as the default
value for the generation of other screenshots in the paper.

EncCon Quang Vinh Nguyen and Mao Lin Huang
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Example of the partitioning
We first describe our partitioning algorithm using an
example. Suppose that we have a rectangle with width 6
and height 4, we need to divide this rectangle into five
rectangles whose weighs are, respectively, {4, 4, 2, 1, 2},
and the starting partitioning side is the left side. The
weight of this rectangle is 13.

The first step is to add a single rectangle with the
weight 4 into the first division side (height_of_R1¼4*6/
13, width_of_R1¼4). Next, we add the second rectangle
(weight 4) below the first, that is, they share the common
left side from the original large rectangle. These two
rectangles will have the dimension, respectively, of
(height_of_R1¼8*6/13, width_of_R1¼4*4/8) and (height_
of_R2¼8*6/13, width_of_R2¼ 4*4/8). Next, step 3 in-
volves inserting the third rectangle (weight 2) at the
bottom of two rectangles. However, this step is dismissed
because the last produced rectangle is too thin
(height_of_R3¼10*6/13, width_of_R3¼2*4/10, l3¼0.174).

We now start the second partitioning circle, moving from
the left side to the top side. In the remaining rectangle,
the division continues on the second side (on the top).
Two more circles are repeated on the other two sides of
the remaining rectangle until all rectangles have been
positioned (see Figure 7).

Local region partitioning
We first define the local region of the root-vertex to be
the entire rectangular display area. The root-vertex is
placed at the centre of this rectangle. The partitioning
starts from the root-vertex and ends when all the leaf-
vertices are reached. Suppose that the rectangular local
region R(v) for vertex v is defined, and the position of v is
at the centre of R(v). We then need to calculate the local
regions {R(vlþ1), R(vlþ 2), y, R(vlþ k)} for all the children
{vlþ 1, vlþ2, y, vlþ k} of vertex v. The partitioning ensures
that the area of each rectangle R(vlþ i) is proportional to
the weight w(vlþ i) of the vertex vlþ i.

Figure 5 The top image shows an example of placing a node-link diagram in a thin rectangle. We can see that the quality

of the graph presentation in this thin rectangle is much lower, in terms of Angular Resolution and Uniform Edge Length, than the quality

of layout of the same graph presented in a square-like rectangle on the bottom. Note that the top diagram contains a node

overlapping.
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The division of R(v) into sub-regions {R(vlþ 1),
R(vlþ2),y, R(vlþ k)} is processed as below:

Suppose that the vertex m is the parent of vertex v. We
first find a side from rectangle R(v), called initial side,
where the vector mn�! cuts the rectangle R(v) or the side
that is closest to m if mn�! does not cut the rectangle. If v is
the root, then the initial side is defaulted as the bottom
side of R(v). We start the partitioning on the opposite side

of the initial side, and the partitioning is then applied to
each of the four sides (east–south–west–north) of R(v) in a
circular manner at the clockwise direction. This proce-
dure is further described as below:

procedure rectangle-partition(array children, rectangle
div-rectangle)
begin

rectangle remaining-rectangle:¼ firstside-partition
(children, div-rectangle);
if remaining-rectangle !¼null then

remaining-rectangle:¼ secondside-partition
(get_remaining_chidlren(), remaining-rectangle);
if remaining-rectangle !¼null then

remaining-rectangle:¼ thirdside-partition
(get_remaining_chidlren(), remaining-rectangle);
if remaining-rectangle !¼null then

remaining-rectangle:¼ fourthside-partition
(get_remaining_chidlren(), remaining-rectangle);

fi
fi

fi
return remaining-rectangle;
end

On each side, the partitioning creates and fills in m
rectangles (mrk) with the same width (or height). Thus,
these sub-regions will form a large rectangle and leave a
rectangular non-partitioned area (see Figure 8). Then, this
non-partitioned rectangle (or also called remaining rec-
tangle) is used for the next division on the next side. The
number m is determined by the size of the remaining
rectangle as well as the smallest ratio lkþ i (1rirm) of all
ratios {lkþ 1, lkþ2,y, lkþm}, where we have

lkþi ¼
width of RðvkþiÞ
height of RðvkþiÞ

: ð2Þ

Suppose that the partitioning is on one side of the
remaining rectangle. We first check the numbers of
children that can be added into this side. We want to
maximize the number m, but also ensure that every sub-
rectangle on the side is roughly square, which must
satisfy the following equation:

1

r
olkþior; ð3Þ

where r is a constant. We set r¼ 1.5 in our implementa-
tions, which ensures the quality of a squared-like space
partitioning and the robustness of the layout algorithm.

Suppose that there are m children {vkþ 1, vkþ2, y, vkþm}
of vertex v needing to be added into a side of the
remaining rectangle, with local regions {R(vkþ1), R(vkþ 2),
y, R(vkþm)}, respectively. Suppose that the widths of sub-
rectangles {R(vkþ1), R(vkþ2), y, R(vkþm)} are the same as
the direction of the partitioned side; the length of this
side is l1 and the length of the other side is l2. Then the

Figure 6 (a) An example of the rectangular division using

C¼0.45. (b) An example of the rectangular division using

C¼0.1.
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width and height of the rectangle R(vkþ i) are calculated
by the following formulas:

width of RðvkþiÞ ¼ l1
wðvkþiÞPm
j¼1 wðvkþjÞ

; ð4Þ

height of RðvkþiÞ ¼ l2

Pm
j¼1 wðvkþjÞ

RW
; ð5Þ

where w(vkþ j) is the weight of the vertex vkþ j. RW is the
weight of the remaining rectangle. RW is initially defined as
the total weight of all the children {vkþ 1, vkþ 2, y, vkþm}.
The value of RW after this partitioning is

RW ¼ RW �
Xm

j¼1

wðvkþjÞ: ð6Þ

The above formulas ensure that the area of each child is
proportional to the weight of the child. The partitioning
happens around four sides of the rectangle R(v). Figure 8
illustrates the partitioning on the left side of a rectangle.

However, this area division might not be completed
because of the ratio of height and width of a particular
rectangle does not satisfy Eq. (3). There are two
approaches to solve this problem.

Approach 1 The initial weight RW of divided rectangle
R(v) is increased slightly and all the steps of the partition-
ing around four sides of the rectangle are implemented
again. This procedure repeats until all the sub-rectangles
are fit in the rectangle R(v). This approach ensures that all
the sub-rectangles are placed circularly around four sides
of the R(v). This technique improves the aesthetical
niceness of the overall enclosure layout. However, this
approach does not entirely utilize the display space.
Figure 9a shows the layout of a data set using this
approach. This procedure is formally defined as below:

procedure partition(array children, rectangle div-
rectangle)
begin

rectangle remaining-rectangle¼ rectangle-partition
(children, div-rectangle);
if remaining-rectangle!¼null then

div-rectangle.weight:¼C*div-rectangle.weight;/*
C is a constant to increase the weight*/
partition(children, div-rectangle);

fi
end

Figure 7 An example of partitioning using EncCon’s algorithm.

Figure 8 The partitioning on the left side of the rectangle.
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Approach 2 We continue to partition the remaining
rectangle until all sub-rectangles are fit in the rectangle
R(v). In this case, Eq. (3) is not applied to the procedure of
partitioning to the last node on the side. This approach
ensures 100% space efficiency but it might also reduce the
aesthetical niceness of the overall enclosure layout in com
parison with the previous approach. The algorithm works
best with the list of vertices in ascendant order of weight.
Thus, the list of vertices {v1, v2, y, vn} is sorted in increa-
sing order of weights before we calculate the sub-regions
for these vertices. Figure 9b shows the layout of the same
graph as presented in Figure 9a, produced by the second
approach. This procedure is formally defined as below:

procedure partition(array children, rectangle div-
rectangle)
begin

rectangle remaining-rectangle¼ rectangle-partition
(children, div-rectangle);
if remaining-rectangle !¼ null then

partition(get_remaining_chidlren(), remaining-
rectangle);

fi
end

From our experiments that include those from Figures
12 to 15, and Applications 1 and 2, it has been found that
Approach 2 often produces better layouts than Approach
1 does. The layouts used in other examples of this paper
are generated by the second approach. Figures 12–15 in
this paper are examples of the visualization using EncCon
layout algorithm on various data sets.

Comparison of different partitioning algorithms for
placing node–link diagrams
The Squarified Tree-Maps19 also aims to produce square-
like rectangles and it produces similar space partitioning
outcomes as EncCon does. Therefore, the partitioning
outcomes produced by Squarified Tree-Maps19 also satisfy
the space partitioning requirements for EncCon visualiza-
tion. However, technically these two approaches are
different. The EncCon partitioning algorithm places the
local regions around four sides (east–south–west–north)
of the parent rectangle in a circular manner (see Figure
10a), while most of other space-filling algorithms includ-
ing the Squarified Tree-Maps partition rectangles in a
vertical–horizontal manner as illustrated in Figure 10b.
The second partitioning approach in EncCon also repeats
the above process inside the remaining rectangle until all
local regions are calculated. Our partitioning ensures the
efficiency of space utilization as most of the space-filling
approaches do. This process aims to enhance a good
distribution of nodes and edges of a given node–link
diagram in its rectangular local region.

Therefore, we believe that our partitioning algorithms
can improve the aesthetical appearance of the layout of
any given graph. In addition, our algorithm also checks
the ‘squared’ aspect of rectangular local regions by using
a simplified process (see Eqs. (2) and (3)).

Figure 11 shows an example of space partitioning using
four different partitioning algorithms, including the one
we used in EncCon and another one used in Squarified
Tree-Maps. We then use our vertex positioning rules to
place a small node–link diagram in each of these images
so that we can observe the quality of these layouts

Figure 9 The example layouts of a medium size data set with approximately 170 nodes. The layout in picture (a) is generated by

Approach 1 and the layout in picture (b) is generated by Approach 2.
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generated by different partitioning algorithms. Clearly,
for small data sets, the differences between these algo-
rithms, in terms of layout quality, computational time
and space utilization, are not significant. We can see from
these images in Figure 11 that the output layouts are
similar, except for the layout generated by the original
Tree-Maps algorithm as shown in Figure 11d. By using this
‘slice and dice’ Tree-Maps for the partitioning, the
hierarchical node–link diagram is heavily overlapped
and hard to be seen. From this example, we see that
both Squarified Tree-Maps and EncCon partitioning can
produce relatively good layouts for small node–link
diagrams. However, the real advantage of EncCon visua-
lization is to present large data sets with the high-density
layouts, where vertices of the graph are well distributed
and the space utilization is optimized (see Figures 14 and
15). In the next section, we will use several large data sets
to conduct a formal evaluation of these square-like area

partitioning algorithms, including Squarified Tree-Maps
and EncCon partitioning, against the Aesthetics Rules
defined in graph drawing. This will enable us to compare
these algorithms in terms of producing high-quality
layouts.

An experimental evaluation of square-like partitioning
algorithms
From the comparison of the four partitioning algorithms
shown in Figure 11, we see that the square-like partition-
ing algorithms, which include Squarified Tree-Maps and
EncCon Partitioning, can produce better layouts for the
placement of small node–link diagrams. Other partition-
ing algorithms, such as Strip Tree-Maps and Original Tree-
Maps, are not as good in this kind of visualization.
Therefore, in this section, we only evaluate Squarified
Tree-Maps’ and EncCon’s partitioning algorithms, and
then compare the outcomes of the evaluation against
the aesthetics rules defined in graph drawing.42 This
experimental evaluation was carried out with five data
sets consisting of 26, 900, 3660, 9500 and 50,000 nodes.
The layouts of these data sets are presented, respectively,
from Figures 11 to 15. The aesthetics rules we are
using for the evaluation include edge crossings, Angular
Resolution, Total Edge Length, and Uniform Edge Length.
We now evaluate the partitioning algorithms against
these aesthetics rules one by one.

Edge crossings Edge crossings make it difficult to trace
paths and to interpret the relationships. Therefore, all
edge crossings should be removed or the number of edge
crossings should be minimized. To reduce the complexity
of evaluation, we only consider the edge crossings in the
top three levels of the hierarchy. This is because the small
graphical edges in the lower levels of the hierarchy can
only show the global ‘density’ information of the data
sets, rather than particular detailed relationships. They
are too small to be seen, and crossings among these small
edges are not significant, in terms of interpreting
particular relationships. Therefore, we can ignore count-
ing these edge crossings in the lower levels of the
hierarchy. Table 1 shows the actual number of edge
crossings that occurred in five different layouts generated
by EncCon and Squarified Tree-Maps algorithms.

We can see from Table 1 that EncCon’s partitioning
algorithm produces fewer edge crossings for data sets 2
and 3, while Squarified Tree-Maps’ partitioning algorithm
produces slightly fewer crossings for data sets 4 and 5.

Angular Resolution The Angular Resolution aesthetic rule
measures the Average Angular Variance of all angles formed
by edges of a non-leaf node and its child vertices. Suppose
that vertex vi has k children {vlþ1, vlþ 2, y, vlþ k} and the
angle formed by edges {vivlþ 1, vivlþ 2, y, vivlþ k} is {ylþ 1,
ylþ2,y, ylþ k,}. The average angle ai of vertex vi is

Figure 10 The diagram shows the partitioning direction in (a)

EncCon and (b) Squarified Tree-Maps.
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calculated by the following formula:

ai ¼
1

k

Xk

j¼1

ylþj: ð7Þ

Then, the Average Angular Variance AVi (in percentage
scale) of all the angles {ylþ1, ylþ 2, y, ylþ k,} at vertex vi is

calculated by

AVi ¼
100%

Pk
j¼1 jylþj � aij
kai

: ð8Þ

Ideally, if all angles at vertex vi are equal, then AVi¼0.
Finally, the overall Average Angular Variance AV of the

Figure 11 The layouts of the first experimental data set. (a) a layout using EncCon’s partitioning algorithm, (b) a layout using

Squarified Tree-Maps’ partitioning algorithm, (c) a layout using Strip Tree-Maps’ partitioning algorithm and (d) a layout using the

original Slice and Dice Tree-Maps’ partitioning algorithm.
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entire tree T, which consists of n vertices {n1,n2, y,nn}, is
calculated by the following formula:

AV ¼ 1

n

Xn

i¼1

AVi: ð9Þ

We aim to minimize the value of AV for the layout of
given trees. Table 2 shows the Angular Resolution in five

different layouts generated by the EncCon and Squarified
Tree-Maps algorithms.

We can see from Table 2 that the EncCon’s partitioning
algorithm produces a better Angular Resolution in layouts
2–5, while Squarified Tree-Maps partitioning algorithm
produces a slightly better Angular Resolution in layout 1 of
a small data set.

Figure 12 The layouts of the second experimental data set: a

Unix file directory with approximately 900 sub-directories and

files that are generated by (a) EncCon’s partitioning algorithm

and (b) Squarified Tree-Maps’ partitioning algorithm.

Figure 13 The layouts of the third experimental data set: a file

system with approximately 3660 sub-directories and files that

are generated by (a) EncCon’s partitioning algorithm and (b)

Squarified Tree-Maps’ partitioning algorithm.
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Total Edge Length To satisfy the Total Edge Length
aesthetic of graph drawing, we should minimize the
sum of the lengths of all edges of the graph. This aesthetic
is usually measured through the value of Average Edge
Length AL. In other words, the average of all edge lengths
in optimized graph layouts should be as small as possible.

Suppose that G ¼ {V, E} is a graph, where the edge set E
¼ {e1, e2, y, en}. The length lei

of each edge ei linking
between two vertices va(xa, ya) and vb(xb, yb) can be easily
calculated by the following formula:

lei
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa � xbÞ2 þ ðya � ybÞ2

q
: ð10Þ

Figure 14 The layouts of the fourth experimental data set: the

entire Java SDK, v.1.4.1 Documentation with approximately

9500 sub-directories and files that are generated by (a) EncCon’s

partitioning algorithm and (b) Squarified Tree-Maps’ partitioning

algorithm.

Figure 15 The layouts of the fifth experimental data set: a very

large data with approximately 50,000 nodes that are generated

by (a) EncCon’s partitioning algorithm and (b) Squarified Tree-

Maps’ partitioning algorithm.
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Then the Average Edge Length AL of all edges in graph G
can be calculated by the following formula:

AL ¼ 1

n

Xn

j¼1

lej
: ð11Þ

This aesthetic rule, in conventional graph drawing, is
defined based on the assumption that all edges and
vertices of a given graph are assigned the same value for
their graphical attributes. For example, under this
assumption all vertices will use the same style of icons
(nodes) with the same size and same background for their
visual presentation, and all edges will use the same
graphical line-type with the same thickness and the same
brightness for their visual presentation.

However, in EnclosureþConnection visualization, the
above assumption no longer holds. In EncCon, vertices
and edges at different levels of the hierarchy are
associated with different graphical attributes or different
values of the same attributes. Fortunately, all vertices and
edges in the same level of the hierarchy are assigned the
same graphical attributes and the same value of these
graphical attributes.

We believe that it is unfair to count all edges of
different levels with different visual effects for the

calculation of this single measurement. Therefore, we
modify this aesthetic by calculating the AL0, AL1, and AL2

of all edges at different levels, respectively, 0, 1, and 2, of
the hierarchy separately. Table 3 shows the Average Edge
Length of five different layouts at the top three levels of
the hierarchy, generated by Squarified Tree-Maps and
EncCon partitioning algorithms.

Uniform Edge Length Like the Angular Resolution aes-
thetic we described above, the Uniform Edge Length
aesthetic is for the measurement of the average length
variance of all edges of a given graph (or a sub-graph). We
aim to minimize the variance of the lengths of the edges.
An optimized graph layout should have all edge lengths
as uniform as possible.

Suppose that G ¼ {V, E} is a graph, where the edge set
E ¼ {e1, e2, y, en} with the corresponding edge lengths of
{le1, le2, y, len}. The length lei of each edge ei can be easily
calculated by formula 10, and the Average Edge Length AL
of all edges in graph G can be calculated by formula 11.
Thus, the Average Length Variance ALV (in percentage
scale) of all edges in G can be calculated by the following
formula:

ALV
100%

Pn
j¼1 jlej

� ALj
n 	 AL

: ð12Þ

We also calculate three values ALV0, ALV1, and ALV2 for
three different levels of the hierarchy separately because
of the above reason. Table 4 shows the Average Length
Variance of five different layouts at the top three levels of
the hierarchy, generated by Squarified Tree-Maps’ and
EncCon’s partitioning algorithms.

Results of the evaluation
The results of the evaluation based on the above criteria
are summarized in Figure 16. This figure shows a
comparison of the edge crossings, Angular Resolution, Total
Edge Length, and Uniform Edge Length between two series
of layouts, generated by Squarified Tree-Maps partitioning
and EncCon’s circular partitioning. Five experiments were
carried out with five different data sets, covering small,
medium, moderately large, large and very large hierarch-
ical data examples (see layouts from Figures 11 to 15).

Overall, from the result of comparisons, we can see that
for medium and moderately large data sets EncCon’s
partitioning performs significantly better than Squarified

Table 1 Numbers of the edge crossings in top three levels

Squarified

Tree-Maps

EncCon

No. of crossings in data set 1 0 0

No. of crossings in data set 2 32 8

No. of crossings in data set 3 812 276

No. of crossings in data set 4 44 58

No. of crossings in data set 5 8 12

Table 2 Angular resolution

Squarified

Tree-Maps

EncCon

AV value in data set 1 11.08 15

AV value in data set 2 42.97 32.42

AV value in data set 3 43.44 43.35

AV value in data set 4 48.73 45.28

AV value in data set 5 30.71 25.88

Table 3 Average Edge Length (the size of display is: 700
700 pixels)

Level 0 – AL0 Level 1 – AL1 Level 2 – AL2

Squarified EncCon Squarified EncCon Squarified EncCon

Data set 1 265.06 263.9 117.25 116.2 0 0

Data set 2 309.11 300.06 97.6 99.52 105.83 112.08

Data set 3 339.91 339.86 76.09 87.82 29.59 31.26

Data set 4 326.91 307.95 155.97 168.44 38.52 48.41

Data set 5 268.73 279 92.3 92.55 41.29 45.47

EncCon Quang Vinh Nguyen and Mao Lin Huang
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Tree-Maps in terms of minimizing edge crossings. The
layout of a medium (or moderately large) size graph
generated by EncCon’s partitioning algorithm contains
only approximately 25% of the edge crossings that
occurred in the layout of the same graph generated by
Squarified Tree-Maps.

We can also see that the EncCon partitioning produces a
better Angular Resolution in layouts 2–5, while Squarified
Tree-Maps partitioning produces a slightly better Angular
Resolution in layout 1 of a small data set.

There is no significant difference between these two
algorithms in producing Average Edge Length. However,
EncCon partitioning does significantly reduce the Average
Length Variance in the layout of moderately large or large
graphs.

Layering display and view navigation
Although there have been many proposed innovative
focusþ context techniques to facilitate the viewing and

navigation of medium size information spaces, the
exploration of large information spaces remains a
challenging task in the design of interactive visualization.
Even if the advances in graph drawing research have
enabled the efficient calculation of the corresponding
geometrical spaces of large graphs and their placements
on the screen (see Figures 14 and 15), the retrieval of
actual data items through the large visualization is still
impossible unless it provides effective navigation me-
chanisms. For example (as shown in Figure 14), we can
use EncCon layout algorithm to display the overall
structure of the entire Java SDK Documentation version
1.4.1 in one screen; however, how could we get this
visualization to cooperate with the actual information
retrieval activities? How could we navigate from this large
visualization (with 9500 nodes) to find a detailed
description of a particular file, sub-directory or Java
command? Clearly, the key to the successful design of
large interactive visualization is navigation. Without

Table 4 Average Length Variance (the size of display is: 700
700 pixels)

Level 0 – ALV0 Level 1 – ALV1 Level 2 – ALV2

Squarified EncCon Squarified EncCon Squarified EncCon

Data set 1 16.68 16.33 29.78 32.14 0 0

Data set 2 20.21 16.04 42.27 35.63 46.72 38.92

Data set 3 24.79 18.56 55.13 40.46 37.57 38.05

Data set 4 31.27 27.64 66.15 51.14 61.61 58.86

Data set 5 25.7 23.05 38.78 32.7 40.75 42.61

Figure 16 A summary of the experimental evaluation results that were generated with five data sets consisting of 26, 900, 3660,

9500 and 50,000 nodes.
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providing efficient navigation mechanisms that coop-
erate with large displays, the visualization technique is
useless in the field of information retrieval, which aims to
assist users to retrieve the particular data items they want.

Most existing focusþ context techniques require the
division of display areas for the display of both the global
view (or the context view) and the detail view (or the focus
view), such as Information Slices43 and Bifocal Tree.44 Thus,
the available display space left for displaying the global
structure (as well as the focus view) is getting smaller (see
Figure 3). Other techniques apply multiple windows to
display the global context and the focus view of informa-
tion.45 However, the use of separate windows breaks the
context (or nature connection) between two views. This
costs viewers extra cognitive efforts to link two views into
one context.

To be able to efficiently handle the viewing/navigation
of large data sets and address the above problem, EncCon
uses a new zoomingþ layering concept to achieve the
focusþ context viewing of large hierarchies. This techni-
que is different from the traditional enlargeþ embedded
concept which is used by other focusþ context techni-
ques. Technically, it employs a semi-transparency graphi-
cal technique to achieve the display of two layers in the
virtual z-coordination at the same physical screen. This
allows both the context view and the detail view to be
drawn at two separate layers. These layers are then
displayed in an overlapped manner at the same physical
screen space. The EncCon always keeps one view in a
highlighted and another in a de-emphasized state.

The focus view is displayed in a full screen with more
details for users to see. The system allows the viewer to
interactively shift the highlighting by bring the view to
the front/back between the global view and the detail view.
This improves the utility of the display space while still
providing both the focus and the context information.
The viewing technique is independent of the layout
algorithm, and thus, it can be applied to other layout
algorithms.

The navigation in EncCon is achieved interactively by
semantic zooming, updating views and swapping views
between layers. All these transactions are accommodated
by animation to preserve the user’s mental map of views.

The transparency techniques have been used in a
number of three-dimensional visualization systems, such
as the Information Cube,39 Cone-Tree15 and the Spiral
Calendar,40 etc, to solve the overlapping problem in
three-dimensional viewing. However, these systems did
not use the transparency technique for navigating
abstract graphs in two-dimensional spaces. Lieberman41

also presented a good technique for navigating geometry-
related information spaces. However, his research focus is
on the navigation of a spatial metaphor in which the data
presentation is based on the graphical rendering techni-
ques. We adapted his transparency idea and applied it to
the navigation of graph visualization, in which a
different visual metaphor ‘the abstract graph’ is used for
representing data.

In our visualization, the global view is overlapped with
the detail view and they are displayed in two separate
graphical layers of the same physical screen with different
visibility values. As the default mode of the display, the
focus view is drawn in full screen size on layer 1 of the
display while the context view is drawn in a reduced size at
the centre of layer 2. The purpose of this arrangement is
to reduce the distraction between two views. The
distractions may occur when there are too many overlaps
among nodes between two views. At the default mode, we
assign a visible value to layer 1 and a semi-transparency
value to layer 2. The size of global view can be
interactively adjusted to suit the user’s preference. In
our application, the default size of the global view is a half
of the entire display area.

There are two modes of the display: ‘default’ and
‘context’. In the ‘default’ mode, we assume that the user’s
attention is on the content of a particular detailed sub-
structure from the entire information structure. However,
it is quite possible that a user moves his attention from a
detailed sub-structure to the content of the global
structure during navigation. Therefore, we defined a
‘context’ display mode that shifts the visibility values
between two display layers. Practically, we re-assign a
visible value to layer 2 (the global view) allowing users to
see the content of the global structure and turn off the
visible to semi-transparency for layer 1 (the detail view). In
other words, in the ‘context’ mode, the display is reversed
so that the global view is brought from the back to the
front and highlighted and the detail view is sent from the
front to the back and displayed in a semi-transparent
manner. These two views can be shifted interactively by
using left mouse-click on the background of each layer.
The shifting between views is accommodated by fade in/
out animation to preserve the user’s mental map of views.

The background of the context view is painted with a
slightly darkened colour in comparison with the detail
view’s background. This helps the context view to stand out
from the detail view. The selected sub-hierarchy is also
highlighted in the context view by using a different
background colour as well as selected node. This property
helps to improve the clarity of the display. The context
view in this visualization can be either the view of the
entire hierarchy or the view of a sub-hierarchy, which is
previously displayed as a detail view before a user selects a
particular subset from this context.

In our visualization, the selection of a focus visual node
v (a sub-hierarchy or an object) is the main mode of
interactions taken by users during the navigation. This
interaction can be applied to any visible node v at the
detail view or context view in order to utilize a semantic
zooming technique22 to enlarge the display of local region
R(v) into the full screen and bring it to layer 1 as a new
detail view, which overrides the previous display of layer 1.
The system can also return the context view back to the
detail view by a right mouse clicking. The context view
then will be enlarged through semantic zooming and can
be brought from layer 2 to layer 1 for full screen display.
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Application examples
We have applied our layout algorithm and navigation
technique to several applications including a visual
collaborative system for shared workspaces and a visual
product catalogue for online auctions. Both Figures 17
and 18 are the screenshots of these two applications. In
this section, we will describe the applications of EncCon
visualization in shared collaborative environment and
the e-commerce.

Application 1 Visual display and navigation of shared
collaborative workspaces.

We have developed a new interactive visualization that
appears as an additional window embedded in a colla-
borative system called LiveNe.46 This visual component
can be used for viewing, navigating, editing and manip-
ulating knowledge-based learning information. It em-
ploys our EncCon technique to handle large-scale
collaborative information and it aims to provide a better
assistance to users of the LiveNet for visual manipulation

and navigation of collaborative objects stored in a
relational database. We use a rich set of graphical
attributes, such as transparency (visibility), variety of
icons, pop-up window, shapes, colours, etc. to achieve
the display of multiple types of the relationships
simultaneously in the same visualization. This visualiza-
tion component of the LiveNet provides users with not
only a two-dimensional graphical interface for direct data
manipulation, but also a new layering navigation
mechanism allowing users to navigate across different
contexts of the relational structure. In other words, we
allow users to display, view and navigate multiple graphs
through the layering visualization concept. This en-
hances the understanding of complex relational informa-
tion in a real-world situation that the user wants to see.
For instance, Figure 17 shows an example of such
visualization used in shared collaborative workspaces
corresponding to a particular user. We can see from
Figure 17 that a variety of the graphical icons are used to
present different types of objects that are consistent with
the original textual interface. The colours of the edge

Figure 17 A screenshot of the visual interface for a particular user in LiveNet.
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represent different types of the relationships, such as the
classification, the accessing, the participating, and the sharing
relationships.

Application 2 A visual online auction site.

As the second application, we have applied our EncCon
technique to the online purchasing. We created a
prototype of a visual product catalogue for navigating
the large-scale auction items for an online auction store,
which is similar to the current auction sites such as eBay.
The EncCon visualization can display the entire product
hierarchy and then uses the layering focusþ context
technique allowing users to navigate through the item
catalogue to find out particular auction items that they
are interested in. The system also provides mechanisms to
identify special items, so that the user can quickly move
to a particular sub-tree of the item hierarchy. We have
developed a prototype of such an online auction store to
demonstrate the applicability of our visualization techni-
que for browsing large-scale product catalogues. Figure 18
shows an example of an online auction site that uses
EncCon interactive visualization as its visual interface.

Conclusion
We have presented our EncCon approach for visualizing
and navigating large hierarchies. We believe that there
are three key issues currently raised in the design of
effective interactive visualization for manipulating large

data sets. They are (1) space utilization, (2) navigation
mechanisms and (3) minimization of human cognitive
process (a clear presentation).

Space utilization becomes significantly important
when visualizing large graphs with hundreds or thou-
sands of nodes (and edges) because of the limitation of
available screen pixels for display. We do not want to
waste screen pixels for displaying only the background,
and we want to utilize up to 100% of the available pixels
to display the large context structure (or large hierarch-
ical structure). EncCon addresses this issue by using a
rectangular space-filling method for the recursive posi-
tioning of trees in the display space. The space-filling
method used in EncCon is similar to Squarified Tree-
Maps.19 In comparison with the SO-Tree24 which uses a
polygonal space-filling method for the tree positioning,
the rectangular space-filling method is generally more
straightforward for viewers to perceive hierarchical
relationships. Furthermore, the rectangular space-filling
algorithm used in EncCon is relatively simple and requires
less computational time than the polygonal space-filling
algorithm.

Navigation of large hierarchies is the second key issue
raised in the design of interactive visualization. Even if
the advances in graph drawing research have enabled the
efficient geometrical positioning of trees and their
displays, a visualization of large trees would be useless
still, in terms of assisting users to retrieve particular data
items, unless it provides efficient navigation mechanisms

Figure 18 A screenshot of using EncCon interactive visualization as a visual user interface for online auction.

EncCon Quang Vinh Nguyen and Mao Lin Huang

19

Information Visualization



in collaboration with the display. EncCon uses a new
zoomingþ layering concept to achieve the focusþ context
viewing of large hierarchies, rather than the traditional
enlargeþ embedded approach, which is used by most of the
existing focusþ context techniques. Technically, it em-
ploys a semi-transparent graphical technique to achieve
the concurrent display of two separate layers of informa-
tion on the same physical screen. This alternative
approach enlarges the display areas for displaying context
view and detailed view and allows more information to be
presented in both views. The navigation in EncCon is
achieved interactively by semantic zooming, updating
views and swapping views between layers. All these
transactions are accommodated by animation to preserve
the user’s mental map of the views.

The third issue we attempted to address is the
minimization of the human cognitive process involved
in identifying the relational structure of large graphs. The
large graphs usually contain hundreds or thousands of
relationships, and therefore a clear presentation of such
large numbers of relationships is essential for easy
understanding and avoidance of confusion in viewing
such complex relational structures. To be able to enhance
the perception of large relational structures for human

understanding, EncCon still uses a node-link diagram to
show the relationships explicitly in addition to the space-
filling approach used for addressing the space utilization
issue. Furthermore, to reduce the human cognitive cost,
we adopt a rectangular space-filling approach, rather
than a polyclonal space-filling approach for the position-
ing of graphs.

As it addresses all three issues presented above, we
believe that EncCon is an effective approach to create
interactive visualization of large tree-structured relational
data. However, there are still some problems that need to
be solved. For example, we need to solve the problem of
overlapping among nodes between layers even if it is not
very significant since layer 2 is displayed in a semi-
transparent manner.

In the future, we will investigate optimized graphical
techniques and layout algorithms to minimize the effect
of our layered display in human cognition processes.
Although the layering navigation technique is indepen-
dent of the layout, it works better with optimized layouts
of the node–link diagram. We believe that by adopting
optimized layout algorithms, the overlap among nodes
between the context view and the detail view will become
insignificant.
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